Skip to main content
Log in

Determination of Glycoalkaloids in Potatoes and Potato Products by Microwave Assisted Extraction

  • Published:
American Journal of Potato Research Aims and scope Submit manuscript

Abstract

Potato glycoalkaloids can reach levels that are harmful to human health. A rapid and reliable microwave assisted extraction method for quantitative analysis of α-solanine and α-chaconine content in raw potato and potato based products is presented. A chemical microwave was used to determine optimal temperature and pressure conditions for the extraction of α-solanine and α-chaconine from Idaho grown tubers and six commercially available mashed potato products. Recovery efficiency of glycoalkaloids was 37% greater by microwave assisted extraction (19.92 mg/kg glycoalkaloid) as compared to conventional solid/liquid methods (12.51 mg/kg glycoalkaloid). Optimal extraction of glycoalkaloids from potato samples dissolved in methanol was achieved using a microwave reactor set to 90 °C for ten minutes. The interior of Idaho grown tubers was determined to contain lower levels of glycoalkaloids (19.92 mg/kg dry weight; 6.5 ± 1.78 mg α-solanine and 13.40 ± 1.65 mg α-chaconine), as compared to commercial potato products (33.86–81.59 mg/kg).

Resumen

Los glicoalcaloides de la papa pueden alcanzar niveles dañinos a la salud humana. Aquí se presenta un método rápido y confiable de extracción asistida por microondas para análisis cuantitativo del contenido de α-solanina y α-chaconina en papa cruda y en productos a base de papa. Se usó una microonda química para determinar las condiciones óptimas de temperatura y presión para la extracción de α-solanina y α-chaconina, de tubérculos cultivados en Idaho y de seis productos comerciales disponibles de puré de papa. La eficiencia en la recuperación de los glicoalcaloides fue 37% mayor mediante la extracción asistida por microondas (19.92 mg de alcaloide/kg) en comparación a métodos convencionales de sólido/líquido (12.51 mg alcaloide/kg). La extracción óptima de glicoalcaloides de muestras de papa disueltas en metanol se logró usando un reactor de microondas a 90 °C por diez minutos. Se determinó que el interior de los tubérculos cultivados en Idaho contenían niveles más bajos de glicoalcaloides (19.92 mg/kg de peso seco; 6.5 ± 1.78 mg α-solanina y 13.40 ± 1.65 mg α-chaconina), al compararse con productos comerciales (33.86–81.59 mg/kg).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aziz, A., M.A. Randhawa, M.S. Butt, A. Asghar, M. Yasin, and T. Shibamoto. 2012. Glycoalkaloids (alpha-chaconine and alpha-solanine) contents of selected pakistani potato cultivars and their dietary intake assessment. Journal of Food Science 77(3): T58–T61.

    Article  CAS  PubMed  Google Scholar 

  • Bekdeser, B., N. Durusoy, M. Ozyurek, K. Guclu, and R. Apak. 2014. Optimization of microwave-assisted extraction of polyphenols from herbal teas and evaluation of their in vitro hypochlorous acid scavenging activity. Journal of Agricultural and Food Chemistry 62(46): 11109–11115.

    Article  CAS  PubMed  Google Scholar 

  • Cardoso-Ugarte, G.A., G.P. Juarez-Becerra, M.E. Sosa-Morales, and A. Lopez-Malo. 2013. Microwave-assisted extraction of essential oils from herbs. Journal of Microwave Power and Electromagnetic Energy 47(1): 63–72.

    Article  PubMed  Google Scholar 

  • Distl, M., M. Sibum, and M. Wink. 2009. Combination of on-line solid-phase extraction with LC-MS for the determination of potentially hazardous glycoalkaloids in potato products. Potato Research 52(1): 39–56.

    Article  CAS  Google Scholar 

  • Driedger, D.R., and P. Sporns. 2001. Immunoaffinity sample purification and MALDI-TOF MS analysis of alpha-solanine and alpha-chaconine in serum. Journal of Agricultural and Food Chemistry 49(2): 543–548.

    Article  CAS  PubMed  Google Scholar 

  • Friedman, M. 2015. Chemistry and anticarcinogenic mechanisms of glycoalkaloids produced by eggplants, potatoes, and tomatoes. Journal of Agricultural and Food Chemistry 63(13): 3323–3337.

    Article  CAS  PubMed  Google Scholar 

  • Friedman, M., and L. Dao. 1992. Distribution of glycoalkaloids in potato plants and commercial potato products. Journal of Agricultural and Food Chemistry 40(3): 419–423.

    Article  CAS  Google Scholar 

  • Friedman, M., and G.M. McDonald. 1997. Potato glycoalkaloids: chemistry, analysis, safety, and plant physiology. Critical Reviews in Plant Science 16(1): 55–132.

    Article  CAS  Google Scholar 

  • Glorio-Paulet, P., and R.A. Durst. 2000. Determination of potato glycoalkaloids using a liposome immunomigration, liquid-phase competition immunoassay. Journal of Agricultural and Food Chemistry 48(5): 1678–1683.

    Article  CAS  PubMed  Google Scholar 

  • Gosselin, B., and N.I. Mondy. 1989. Effect of packaging materials on the chemical-composition of potatoes. Journal of Food Science 54(3): 629–631.

    Article  CAS  Google Scholar 

  • Gregory, P., S.L. Sinden, S.F. Osman, W.M. Tingey, and D.A. Chessin. 1981. Glycoalkaloids of wild, tuber-bearing Solanum species. Journal of Agricultural and Food Chemistry 29(6): 1212–1215.

    Article  CAS  Google Scholar 

  • Hossain, M.B., A. Rawson, I. Aguilo-Aguayo, N.P. Brunton, and D.K. Rai. 2015. Recovery of steroidal alkaloids from potato peels using pressurized liquid extraction. Molecules 20(5): 8560–8573.

    Article  CAS  PubMed  Google Scholar 

  • Huie, C.W. 2002. A review of modern sample-preparation techniques for the extraction and analysis of medicinal plants. Analytical and Bioanalytical Chemistry 373(1–2): 23–30.

    Article  CAS  PubMed  Google Scholar 

  • Jensen, P.H., B.J. Harder, B.W. Strobel, B. Svensmark, and H.C.B. Hansen. 2007. Extraction and determination of the potato glycoalkaloid alpha-solanine in soil. International Journal of Environmental Analytical Chemistry 87(12): 813–824.

    Article  CAS  Google Scholar 

  • Liu, Y., L. Yang, Y. Zu, C. Zhao, L. Zhang, Y. Zhang, Z. Zhang, and W. Wang. 2012. Development of an ionic liquid-based microwave-assisted method for simultaneous extraction and distillation for determination of proanthocyanidins and essential oil in Cortex cinnamomi. Food Chemistry 135(4): 2514–2521.

    Article  CAS  PubMed  Google Scholar 

  • Luthria, D.L. 2012. Optimization of extraction of phenolic acids from a vegetable waste product using a pressurized liquid extractor. Journal of Functional Foods 4(4): 842–850.

    Article  CAS  Google Scholar 

  • Majeed, A., Z. Chaudhry, and Z. Muhammad. 2014. Changes in foliar glycoalkaloids levels of potato (Solanum tuberosum) triggered by late blight disease severity. International Journal of Agriculture and Biology 16(3): 609–613.

    CAS  Google Scholar 

  • Maldonado, A.F.S., E. Mudge, M.G. Ganzle, and A. Schieber. 2014. Extraction and fractionation of phenolic acids and glycoalkaloids from potato peels using acidified water/ethanol-based solvents. Food Research International 65: 27–34.

    Article  Google Scholar 

  • Man, A.K., and R. Shahidan. 2007. Microwave-assisted chemical reactions. Journal of Macromolecular Science, Part A 44(4–6): 651–657.

    Article  CAS  Google Scholar 

  • Mondy, N.I., and C.B. Munshi. 1990. Effect of nitrogen-fertilization on glycoalkaloid and nitrate content of potatoes. Journal of Agricultural and Food Chemistry 38(2): 565–567.

    Article  CAS  Google Scholar 

  • Nikolic, N.C., M.Z. Stankovic, and D.Z. Markovic. 2005. Liquid-liquid systems for acid hydrolysis of glycoalkaloids from Solanum tuberosum L. tuber sprouts and solanidine extraction. Medical Science Monitor 11(7): BR200–BR205.

    CAS  PubMed  Google Scholar 

  • Passam, H.C., and I.C. Karapanos. 2008. Eggplants, peppers and tomatoes: factors affecting the quality and storage life of fresh and fresh-cut (minimally processed) produce. The European Journal of Plant Science and Biotechnology 2(1): 156–170.

    Google Scholar 

  • Shanker, K., S. Gupta, P. Srivastava, S.K. Srivastava, S.C. Singh, and M.M. Gupta. 2011. Simultaneous determination of three steroidal glycoalkaloids in Solanum xanthocarpum by high performance thin layer chromatography. Journal of Pharmaceutical and Biomedical Analysis 54(3): 497–502.

    Article  CAS  PubMed  Google Scholar 

  • Smith, K.A. 2013. Horrific tales of potatoes that caused mass sickness and even death. http://www.smithsonianmag.com/arts-culture/horrific-tales-of-potatoes-that-caused-mass-sickness-and-even-death-3162870/?no-ist. Accessed 5 March 2016.

  • Sotelo, A., and B. Serrano. 2000. High-performance liquid chromatographic determination of the glycoalkaloids alpha-solanine and alpha-chaconine in 12 commercial varieties of Mexican potato. Journal of Agricultural and Food Chemistry 48(6): 2472–2475.

    Article  CAS  PubMed  Google Scholar 

  • Talebpour, Z., A. Ghassempour, M. Abbaci, and H.Y. Aboul-Enein. 2009. Optimization of microwave-assisted extraction for the determination of glycyrrhizin in menthazin herbal drug by experimental design methodology. Chromatographia 70(1–2): 191–197.

    Article  CAS  Google Scholar 

  • Wang, S.L., N.R. Thompson, and C.L. Bedford. 1972. Determination of glycoalkaloids in potatoes (S. tuberosum) with a bisolvent extraction method. American Journal of Potato Research 49(8): 302–308.

    Article  CAS  Google Scholar 

  • Weissenberg, M., A. Levy, J.A. Svoboda, and I. Ishaaya. 1998. The effect of some Solanum steroidal alkaloids and glycoalkaloids on larvae of the red flour beetle Tribolium castaneum, and the tobacco hornworm, Manduca sexta. Phytochemistry 47(2): 203–209.

    Article  CAS  PubMed  Google Scholar 

  • Widmann, N., M. Goian, I. Ianculov, D. Dumbrava, and C. Moldovan. 2008. Determination of the glycoalkaloids content from potato tubercules (Solanum tuberosum). Lucrări stiintifice Zootehnie si Biotehnologii 41(1): 807–813.

    Google Scholar 

  • Zitnak, A., and G.R. Johnston. 1970. Glycoalkaloid content of B5141-6 potatoes. American Journal of Potato Research 47(7): 256–260.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Dr. Jeffri Bohlscheid, Senior Principal Scientist at J. R. Simplot Company for consultation and material support for this project. The chemical microwave was purchased using funds provided by the state of Idaho Technology Incentive Grant program and the separation and analysis of products was conducted using a UPLC-DAD-MS purchased with funds obtained from the Idaho Department of Commerce Global Entrepreneurial Mission grant program. The financial support of Boise State University College of Arts and Sciences and Office of Sponsored Programs made this work possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Owen M. McDougal.

Ethics declarations

Competing Interests

The authors declare no competing financial interests.

Electronic supplementary material

ESM 1

(DOCX 223 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kondamudi, N., Smith, J.K. & McDougal, O.M. Determination of Glycoalkaloids in Potatoes and Potato Products by Microwave Assisted Extraction. Am. J. Potato Res. 94, 153–159 (2017). https://doi.org/10.1007/s12230-016-9558-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12230-016-9558-9

Keywords

Navigation