Skip to main content

Advertisement

Log in

Attainable CO2 Emission of Ware Potatoes Under High Yield Conditions in Southern Chile

  • Published:
American Journal of Potato Research Aims and scope Submit manuscript

Abstract

The objective of the analysis was to calculate the attainable CO2 emissions associated with the production of one ton of potatoes in a high yield environment in southern Chile. Two field experiments were performed. The first field experiment used an optimal sowing date while the second experiment used a late sowing date. In each experiment, treatments were the factorial combination of (i) four N fertilization rates (0, 75, 150 and 250 kg N ha−1) and (ii) four P fertilization rates (0, 150, 300 33 and 450 kg P2O5 ha−1). The Cool Farm Tool – Potato (CFT) was used to calculate the amount of CO2 produced per one ton of potatoes and LINTUL-Potato was used to simulate potential yields. High variations in tuber yields were observed across experiments (90 and 36 t ha−1). The average tuber yield in experiment one (82 t ha−1) was greater than experiment two (51 t ha−1). Tuber yields were not significantly affected by N fertilization in either experiment. In contrast, tuber yield responded (P < 0.01) positively to P fertilization (10–82 %). The gaps between maximum and potential yields simulated in experiments one and two were 4 and 14 %, respectively. In experiment one, the average total CO2 emissions per ton of potatoes were lower than experiment two (41 and 72 kg CO2 eq t−1, respectively). In both experiments the total CO2 emissions were affected (P < 0.01) by both N and P fertilization. We conclude an average CO2 emission of 46 CO2 eq t−1 could be considered an attainable value for potato production systems with high technology intending to improve their carbon footprints in southern Chile.

Resumen

El objetivo del análisis fue calcular las emisiones de CO2 alcanzables asociadas con la producción de una tonelada de papas en un ambiente de alto rendimiento en el sur de Chile. Se desarrollaron dos experimentos de campo. El experimento uno y dos fueron plantados en una fecha óptima y tardía, respectivamente. En cada experimento los tratamientos resultaron de la combinación factorial de (i) cuatro niveles de fertilización nitrogenada (0, 75, 150, y 250 kg N ha−1) y (ii) cuatro niveles de fertilización fosforada (0, 150, 300, y 450 kg P2O5 ha−1). El modelo Cool Farm Tool-Potato (CFT) se usó para calcular la cantidad de CO2 producida por tonelada de papa y se usó el modelo LINTUL-Papa para simular rendimientos potenciales. Se observaron grandes variaciones en rendimientos de tubérculo a lo largo de los experimentos (90 y 36 t ha−1). El promedio de rendimiento en el experimento uno (82 t ha−1) fue mayor que el del experimento dos (51 t ha−1). Los rendimientos de tubérculo no se afectaron significativamente por la fertilización con N en ningún experimento. En contraste, el rendimiento respondió (P < 0.01) positivamente a la fertilización con P (10–82 %). Las diferencias entre rendimientos máximo y potencial simuladas en los experimentos uno y dos fue 4 y 14 %, respectivamente. En el experimento uno, el promedio de las emisiones totales de CO2 por ton de papa fue más bajo que el del experimento dos (41 y 72 kg de CO2 eq t−1, respectivamente). En ambos experimentos las emisiones totales de CO2 se afectaron (P < 0.01) por la fertilización con N y P. Concluimos que se pudiera considerar un valor alcanzable de un promedio de emisión de CO2 de 46 CO2 eq t−1 para sistemas de producción de papa con alta tecnología, con la intención de mejorar sus huellas de carbono en el sur de Chile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • ASABE. 2006a. Agricultural machinery management data. American Society of Agricultural and Biological Engineers Standard ASAE EP496.3. ASABE, St. Joseph, pp. 385–390.

  • ASABE. 2006b. Agricultural machinery management data. American Society of Agricultural and Biological Engineers Standard ASAE EP496.3. ASABE, St, Joseph, pp. 391–398.

  • Audsley, E., K. Stacey, D.J. Parsons, and A.G. Williams. 2009. Estimation of the greenhouse gas emissions from agricultural pesticide manufacture and use. Bedford: Cranfield University.

    Google Scholar 

  • Bouwman, A.F., L.J.M. Boumans, and N.H. Batjes. 2002. Modeling global annual N2O and NO emissions from fertilized fields. Global Biogeochemical Cycles 16: 281–289.

    Google Scholar 

  • Caldiz, D.O., and P.C. Struik. 1999. Survey of potato production and possible yield constraints in Argentina. Potato Research 42: 51–71.

    Article  Google Scholar 

  • Colomb, V, M. Bernoux, L. Bockel, J.-L. Chotte, S. Martin, C. Martin-Phipps, J. Mousset, M. Tinlot, and O. Touchemoulin. 2012. Review of GHG calculators in agricultural and forestry sectors: a guideline for appropriate choice and use of landscape based tools. FAO EX-ACT, Eco&Sols and ADEME ClimAgri.

  • Ecoinvent Centre. 2007. Ecoinvent data v2.0. Ecoinvent reports No.1-25, Swiss Centre for Life Cycle Inventories, Dübendorf, retrieved from: www.ecoinvent.org.

  • Foresight. 2011. The future food and farming. Final project report. London: The Government Office for Science.

    Google Scholar 

  • Franke, A.C., J.M. Steyn, K.S. Ranger, and A.J. Haverkort. 2011. Developing environmental principles, criteria, indicators and norms for potato production through field surveys and modelling. Agricultural Systems 104: 297–306.

    Article  Google Scholar 

  • Haverkort, A.J., and J.G. Hillier. 2011. Cool Farm Tool – Potato: model description and performance of four production systems. Potato Research 54: 355–369.

    Article  Google Scholar 

  • Haverkort, A.J., A.C. Franke, F.A. Engelbrecht, and J.M. Steyn. 2013. Climate change and potato production in contrasting South African agro-ecosystems 1. Effects on land and water use efficiencies. Potato Research 56: 31–50.

    Article  Google Scholar 

  • Haverkort, A.J., P. Sandaña, and J. Kalazich. 2014. Yield gaps and ecological footprints of potato production systems in Chile. Potato Research 57: 13–31.

    Article  Google Scholar 

  • Hijmans, R. 2003. The effect of climate change on global potato production. American Journal of Potato Research 80: 271–280.

    Article  Google Scholar 

  • Hillier, J., C. Walter, D. Malin, T. Garcia-Suarez, L. Mila-i-Canals, and P. Smith. 2011. A farm-focused calculator for emissions from crop and livestock production. Environmental Modelling & Software 26: 1070–1078.

    Article  Google Scholar 

  • IPCC. 2006. Revised good practice guidelines for greenhouse gas inventories. Intergovernmental Panel on Climate Change (IPCC), Institute for Global Environmental Strategies, Tokyo, Japan. http://www.ipcc-nggip.iges.or.jp/public/2006gl/vol4.html.

  • Kooman, P.L., and A.J. Haverkort. 1994. Modelling development and growth of the potato crop influenced by temperature and daylength: LINTUL-POTATO. In Ecology and modeling of potato crops under conditions limiting growth, ed. A.J. Haverkort and D.K.L. MacKerron, 41–60. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Lal, R. 2004. Carbon emissions from farm operations. Environment International 30: 981–990.

    Article  CAS  PubMed  Google Scholar 

  • ODEPA. 2014. Cultivos anuales: superficie, producción y rendimientos. Oficina de Estudios y Políticas Agrarias. www.odepa.cl/cultivos-anuales-superficie-produccion-y-rendimientos-4/.

  • Ogle, S.M., F.J. Breidt, and K. Paustian. 2005. Agricultural management impacts on soil organic carbon storage under moist and dry climatic conditions of temperature and tropical regions. Biogeochemistry 72: 87–121.

    Article  Google Scholar 

  • Sadras, V.O., D.F. Calderini, and D. Connor. 2009. Sustainable agriculture and crop physiology. In Crop physiology: applications for genetic improvement and agronomy, ed. V.O. Sadras and D.F. Calderini, 1–20. San Diego: Academic Press.

    Chapter  Google Scholar 

  • Sapkota, T., K. Majumdar, M.L. Jat, A. Kumar, D.K. Bishnoi, A.J. McDonald, and M.M. Pampolino. 2014. Precision nutrient management in conservation agriculture based wheat production of Northwest India: profitability, nutrient use efficiency and environmental footprint. Field Crops Research 155: 233–244.

    Article  Google Scholar 

  • Spitters, C.J.T. 1990. Crop growth models: their usefulness and limitations. Acta Horticulturae 267: 349–368.

    Google Scholar 

  • van Rikxoort, H., G. Schroth, P. Läderach, and B. Rodríguez-Sánchez. 2014. Carbon footprints and carbon stocks reveal climate-friendly coffee production. Agronomy for Sustainable Development 34: 887–897.

    Article  Google Scholar 

  • van Wart, J., K.C. Kersebaum, S. Peng, M. Milner, and K.G. Cassman. 2013. Estimating crop yield potential at regional to national scales. Field Crops Research 143: 34–43.

    Article  Google Scholar 

  • Whittaker, C., M.C. McManus, and P. Smith. 2013. A comparison of carbon accounting tools for arable crops in the United Kingdom. Environmental Modelling & Software 46: 228–239.

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support from Project FIA “Consorcio Tecnológico de la Papa” and Project CONICYT/FONDECYT/INICIACION/ N° 11121190. We particularly wish to thank Marco Uribe for his technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricio Sandaña.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sandaña, P., Kalazich, J. Attainable CO2 Emission of Ware Potatoes Under High Yield Conditions in Southern Chile. Am. J. Potato Res. 92, 318–325 (2015). https://doi.org/10.1007/s12230-015-9433-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12230-015-9433-0

Keywords

Navigation