Skip to main content
Log in

Do local environmental conditions affect intraspecific trait variance? Insights from liverwort populations in ecological refuges

  • Published:
Folia Geobotanica Aims and scope Submit manuscript

Abstract

Understanding trait variation along environmental gradients is crucial for assessing the adaptive potential of species. We analysed the intraspecific variation in six morphological traits of Frullania ericoides across environmental gradients (elevation, canopy openness and distance to water sources) in a humid ecological refuge in Brazil’s semi-arid region. The traits measured (mean and coefficient of variation) were: leaf lobe area, leaf lobule area, underleaf area, stem width, ratio between leaf lobule area and leaf lobe area, and ratio between the number of laminate lobules and the total number of lobules. Seventy specimens from eleven localities (populations) showed greater intrapopulation than interpopulation mean trait variation. All traits, except for the ratio between leaf lobule area and leaf lobe area, presented interpopulation differences. Two trait strategies emerged: one related to water storage and plant size, and the other linked to proportional increases in leaf lobule area and lobe area. The lower the elevation was, the higher were the mean values of leaf lobe area and leaf lobule area, and the variance of stem width. The species exhibited significant trait variation, which can be decisive in the responses of populations to new selective pressures of establishment and maintenance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability (data transparency)

All data produced from this study are provided with this manuscript as electronic supplementary material. The datasets used or analysed during the current study are available from the corresponding author on reasonable request.

Code availability (software application or custom code)

The code used or analysed during the current study is available from the corresponding author on reasonable request.

References

  • Ackerly D (2004) Functional strategies of chaparral shrubs in relation to seasonal water deficit and disturbance. Ecol Monogr 74:25–44

    Article  Google Scholar 

  • Alberto FJ, Derory J, Boury C, Frigerio JM, Zimmermann NE, Kremer A (2013) Imprints of natural selection along environmental gradients in phenology-related genes of Quercus petraea. Genetics 195:495–512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Araújo FMS, Costa LEN, Souza JPS, Batista WVSM, Silva MPP (2021) Altitudinal gradient drives regional and local diversity and composition patterns of epiphyllous bryophytes in ecological refuges. Pl Biol 24:292–301

    Article  Google Scholar 

  • Barrett RDH, Schluter D (2008) Adaptation from standing genetic variation. Trends Ecol Evol 23:38–44

    Article  PubMed  Google Scholar 

  • Batista WVSM, Pôrto KC, Santos ND (2018) Distribution, ecology, and reproduction of bryophytes in a humid enclave in the semiarid region of northeastern Brazil. Acta Bot Brasil 32:303–313

    Article  Google Scholar 

  • Bolnick DI, Amarasekare P, Araújo MS, Bürger R, Levine JM, Novak M, Rudolf VHW, Schreiber SJ, Urban MC, Vasseur DA (2011) Why intraspecific trait variation matters in community ecology. Trends Ecol Evol 26:183–192

    Article  PubMed  PubMed Central  Google Scholar 

  • Brandenburg KM, Wohlrab S, John U, Kremp A, Jerney J, Krock B, van de Waal DB (2018) Intraspecific trait variation and trade-offs within and across populations of a toxic dinoflagellate. Ecol Letters 21: 1561–1571

  • Burton JI, Perakis SS, McKenzie SC, Lawrence CE, Puettmann KJ (2017) Intraspecific variability and reaction norms of forest understorey plant species traits. Funct Ecol 31:1881–1893

    Article  Google Scholar 

  • Buryová B, Shaw AJ (2005) Phenotypic plasticity in Philonotis fontana (Bryopsida: Bartramiaceae). J Bryol 27:13–22

    Article  Google Scholar 

  • Conover WJ, Iman RL (1981) Rank transformations as a bridge between parametric and nonparametric statistics. Amer Statistician 35:124–129

    Article  Google Scholar 

  • Cooley AM, Reich A, Rundel P (2004) Leaf support biomechanics of neotropical understory herbs. Amer J Bot 91:573–581

    Article  Google Scholar 

  • Cornelissen JHC, Ter Steege H (1989) Distribution and ecology of epiphytic bryophytes and lichens in dry forest of Guyana. J Trop Ecol 5:131–150

    Article  Google Scholar 

  • Daniels AED (1998) Ecological adaptations of some bryophytes of the Western Ghats. J Ecobiol 10:261–270

    Google Scholar 

  • De Bello F, Thuiller W, Lepš J, Choler P, Clement JC, Macek P, Sebastia MT, Lavorel S (2009) Partitioning of functional diversity reveals the scale and extent of trait convergence and divergence. J Veg Sci 20:475–486

    Article  Google Scholar 

  • During HJ, Verduyn B, Jägerbrand AK (2015) Biomechanical properties of the terrestrial mosses Pleurozium schreberi (Brid.) Mitt. and Pogonatum japonicum Sull. & Lesq. along altitudinal gradients in northern Japan. Arctoa 24:375–381

    Article  Google Scholar 

  • Flora e Funga do Brasil. Jardim Botânico do Rio de Janeiro. Available at http://floradobrasil.jbrj.gov.br (Accessed on 02 May 2022)

  • Fox J, Weisberg S (2019) An R companion to applied regression, Third edition. Sage, Thousand Oaks CA

    Google Scholar 

  • Frazer GW, Canham CD, Lertzman KP (1999) Gap Light Analyzer (GLA), Version 2.0: Imaging software to extract canopy structure and gap light transmission indices from true-colour fisheye photographs, users manual and program documentation. Simon Fraser University, Burnaby, British Columbia, and the Institute of Ecosystem Studies, Millbrook, New York

  • Frenzke L, Wanke S, Isnard S, Stoll A, Neinhuis C, Rowe NP (2011) Stem biomechanics of the giant moss Dendroligotrichum dendroides s. l. and its significance for growth form diversity in mosses. Arctoa 33:229–236

    Google Scholar 

  • Glime JM (2021) Bryophyte ecology. Available at https://digitalcommons.mtu.edu/oabooks/4 (Accessed on 05 January 2023)

  • Glime JM, Chavoutier L (2017) Glossary. In Glime JM (ed) Bryophyte Ecology. Ebook sponsored by Michigan Technological University and the International Association of Bryologists, pp 1–46 Available at: http://digitalcommons.mtu.edu/bryophyte-ecology (Accessed on 5 January 2023)

  • Gradstein SR (1995) Diversity of Hepaticae and Anthocerotae in montane forests of the tropical Andes. In Churchill SP, Balslev H, Forero E, Luteyn JL (eds) Biodiversity and conservation of neotropical montane forests. The New York Botanical Gardens, Bronx, NY, pp 321–334

  • Gradstein SR, Uribe-M J (2011) A synopsis of the Frullaniaceae (Marchantiophyta) from Colombia. Caldasia 33:367–396

    Google Scholar 

  • Harrell Jr F (2023) Hmisc: Harrell miscellaneous. R package version 5.1-0. Available at https://CRAN.R-project.org/package=Hmisc (Accessed on 12 July 2023)

  • Heinrichs J, Hentschel J, Feldberg K, Bombosch A, Schneider H (2009) Phylogenetic biogeography and taxonomy of disjunctly distributed bryophytes. J Syst Evol 47:497–508

    Article  Google Scholar 

  • Heinrichs J, Hentschel J, Bombosch A, Fiebig A, Reise J, Edelmann M, Kreier H-P, Schäfer-Verwimp A, Caspari S, Schmidt AR, Zhu R-L, von Konrat M, Shaw B, Shaw AJ (2010) One species or at least eight? Delimitation and distribution of Frullania tamarisci (L.) Dumort. s. l. (Jungermanniopsida, Porellales) inferred from nuclear and chloroplast DNA markers. Molec Phylogenet Evol 56:1105–1114

    Article  CAS  PubMed  Google Scholar 

  • Henriques DS, Rigal F, Borges PA, Ah-Peng C, Gabriel R (2017) Functional diversity and composition of bryophyte water-related traits in Azorean native vegetation. Pl Ecol Diversity 10:127–137

    Article  Google Scholar 

  • Hentschel J, von Konrat MJ, Söderström L, Hagborg A, Larraín J, Sukkharak P, Uribe J, Zhang L (2015) Notes on Early Land Plants Today. 72. Infrageneric classification and new combinations, new names, new synonyms in Frullania (Marchantiophyta). Phytotaxa 220:127–142

    Article  Google Scholar 

  • Hu YK, Pan X, Liu GF, Li WB, Dai WH, Tang SL, Zhang YL, Xiao T, Chen LY, Xiong W, Zhou MY, Song YB, Dong M (2015) Novel evidence for within-species leaf economics spectrum at multiple spatial scales. Frontiers Pl Sci 6:901

    Google Scholar 

  • Jaszczuk I, Kotowski W, Kozub Ł, Kreyling J, Jabłońska E (2023) Physiological responses of fen mosses along a nitrogen gradient point to competition restricting their fundamental niches. Oikos 2023:e09336

    Article  CAS  Google Scholar 

  • Jiangshan L, Yi Z, Shuang Z, Xiaoguang Z, Lingfeng Mao (2022) glmm.hp: An R package for computing individual effect of predictors in generalized linear mixed models. J Pl Ecol 15:1302–1307

    Article  Google Scholar 

  • Kassambara A, Mundt F (2020) factoextra: Extract and visualize the results of multivariate data analyses. R package version 1.0.7. Available at https://CRAN.R-project.org/package=factoextra (Accessed on 18 July 2023)

  • Kluge J, Kessler M (2011) Phylogenetic diversity, trait diversity and niches: species assembly of ferns along a tropical elevational gradient. J Biogeogr 38:394–405

    Article  Google Scholar 

  • Kneitel JM, Chase JM (2004) Trade-offs in community ecology: linking spatial scales and species coexistence. Ecol Letters 7:69–80

    Article  Google Scholar 

  • Korner C (2007) The use of ‘altitude’ in ecological research. Trends Ecol Evol 22:569–574

    Article  PubMed  Google Scholar 

  • Lenth R (2023) emmeans: Estimated marginal means, aka least-squares means. R package version 1.8.8. Available at https://CRAN.R-project.org/package=emmeans (Accessed on 18 July 2023)

  • Lima E, Oliveira-da-Silva FR, Ilkiu-Borges AL (2018) Flora das cangas da Serra dos Carajás, Pará, Brasil: Frullaniaceae. Rodriguésia 69:973–981

    Article  Google Scholar 

  • Lin W, Wang Y, Coudert Y, Kierzkowski D (2021) Leaf morphogenesis: insights from the moss Physcomitrium patens. Frontiers Pl Sci 12:736212

    Article  Google Scholar 

  • Liu L, Jiang Y, Song X, Tang J, Kou J, Fan Y, Shao X (2021) Temperature, not precipitation, drives the morphological traits of Didymodon rigidulus in Tibet. Ecol Indicators 133:108401

    Article  Google Scholar 

  • Loiola MIB, Araújo FS, Lima-Verde LW, Souza SSG, Matias L, Menezes MOT, Silva MAP, Albuquerque UP (2015) Flora da Chapada do Araripe [Flora of the Chapada do Araripe]. In Albuquerque UP, Meiado MV (eds) Sociobiodiversidade na Chapada do Araripe. NUPEEA: Canal 6, Bauru [in Portuguese]

  • Mac Nally R, Walsh CJ (2004) Hierarchical partitioning public-domain software. Biodivers & Conservation 13:659–660

    Article  Google Scholar 

  • Magurran AE, McGill BJ (2011) Biological diversity: frontiers in measurement and assessment. Oxford University Press, Oxford

    Google Scholar 

  • McDaniel SF, Shaw AJ (2003) Phylogeographic structure and cryptic speciation in the trans-Antarctic moss Pyrrhobryum mnioides. Evolution 56:205–215

    Google Scholar 

  • McLean EH, Prober SM, Stock WD, Steane DA, Potts BM, Vaillancourt RE, Byrne M (2014) Plasticity of functional traits varies clinally along a rainfall gradient in Eucalyptus tricarpa. Pl Cell Environm 37:1440–1451

    Article  CAS  Google Scholar 

  • Medina RG, Barcellos SA, Victoria FDC, Albuquerque MPD, Pereira AB, Stefenon VM (2015) Evidence of morphometric differentiation among Antarctic moss populations as a response to local microenvironment. Acta Bot Brasil 29:383–390

    Article  Google Scholar 

  • Merinero S, Dahlberg CJ, Ehrlén J, Hylander K (2020) Intraspecific variation influences performance of moss transplants along microclimate gradients. Ecology 101:e02999

    Article  PubMed  Google Scholar 

  • Messier J, McGill BJ, Martin J, Lechowicz MJ (2010) How do traits vary across ecological scales? A case for trait-based ecology. Ecol Letters 13:838–848

    Article  Google Scholar 

  • Midolo G, De Frenne P, Hölzel N, Wellstein C (2019) Global patterns of intraspecific leaf trait responses to elevation. Global Change Biol 25:2485–2498

    Article  Google Scholar 

  • Monteiro J, Vieira C, Branquinho C (2023) Bryophyte assembly rules across scales. J Ecol 111:1531–1544

    Article  Google Scholar 

  • Moore TE, Jones CS, Chong C, Schlichting CD (2020) Impact of rainfall seasonality on intraspecific trait variation in a shrub from a Mediterranean climate. Funct Ecol 34:865–876

    Article  Google Scholar 

  • Nicotra AB, Atkin OK, Bonser SP, Davidson AM, Finnegan EJ, Mathesius U, Poot P, Purugganan MD, Richards CL, Valladares F, van Kleunen M (2010) Plant phenotypic plasticity in a changing climate. Trends Pl Sci 15:684–692

    Article  CAS  Google Scholar 

  • Niklas KJ (2000) The evolution of plant body plans—A biomechanical perspective. Ann Bot (Oxford) 85:411–438

    Article  Google Scholar 

  • Paradis E, Schliep K (2019) ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35:526–528. Available at https://doi.org/10.1093/bioinformatics/bty633

  • Pereira MR, de S. Dambros C, Zartman CE (2013) Will the real Syrrhopodon leprieurii please stand up? The influence of topography and distance on phenotypic variation in a widespread Neotropical moss. Bryologist 116:58–64

  • Petter G, Wagner K, Wanek W, Sánchez Delgado EJS, Zotz G, Cabral JS, Kreft H (2016) Functional leaf traits of vascular epiphytes: vertical trends within the forest, intra- and interspecific trait variability, and taxonomic signals. Funct Ecol 30:188–198

    Article  Google Scholar 

  • Pinangé DSB, Louzada RB, Wöhrmann T, Krapp F, Weising K, Zizka G, Polo EM, Wanderley MGL, Benko-Iseppon AM (2020) Population genetics shed light on species delimitation and life history of the Dyckia pernambucana complex (Bromeliaceae). Bot J Linn Soc 192:706–725

    Article  Google Scholar 

  • Pócs T (2008) Chapter Thirteen: Bryophytes from the Fiji Islands, IV. The genus Frullania Raddi (Jungermanniopsida), I., with description of F. vivipara Pócs, spec. nov. Fieldiana Bot 2008:147–158

    Article  Google Scholar 

  • Pôrto KC, Cabral JJP, Tabarelli M (2004) Brejos de altitude em Pernambuco e Paraíba. História Natural, Ecologia e Conservação [Brejos de altitude of Pernambuco and Paraíba: Natural History, Ecology and Conservation] MMA, Brasília [in Portuguese]

  • Proctor MCF (2000) The bryophyte paradox: tolerance of desiccation, evasion of drought. Pl Ecol 151:41–49

    Article  Google Scholar 

  • Proctor MCF, Oliver MJ, Wood AJ, Alpert P, Stark LR, Cleavitt NL, Mishler BD (2007) Desiccation-tolerance in bryophytes: a review. Bryologist 110:595–621

    Article  CAS  Google Scholar 

  • Rasband WS (1997–2018) ImageJ, U.S. National Institute of Health, Bethesda, Maryland, USA

  • Santiago ACP, Barros ICL, Sylvestre LS (2004) Floristic survey of pteridophytes in three forest fragments of a ‘brejo de altitude’ (Bonito, Pernambuco, Brazil). Acta Bot Brasil 18:781–792

    Article  Google Scholar 

  • Scheiner SM, Levis NA (2021) The loss of phenotypic plasticity via natural selection: genetic assimilation. In Pfennig DW (ed) Phenotypic plasticity & evolution: causes, consequences, controversies. CRC Press, Boca Raton

  • Schielzeth H, Nakagawa S (2013) Nested by design: model fitting and interpretation in a mixed model era. Meth Ecol Evol 4:14–24

    Article  Google Scholar 

  • Schuster RM (1992) The Hepaticae and Anthocerotae of North America east of the hundredth meridian, vol V. Columbia University Press, New York

    Google Scholar 

  • Silva AKNC, Dambros CS, Pereira MR, Zartman CE (2017) Is phenotypic variation reflected in habitat connectivity? A morphometric comparison of two moss species from insular and continuous habitats of the Amazon Basin. Bryophyte Diversity Evol 39:102–114

    Article  Google Scholar 

  • Silva CLP, Melo B, Silva MAP, Lavor P (2021) Chapada do Araripe Cearense: status de conhecimento [Chapada do Araripe of Ceará: knowledge status] Cad Cult Ci 18:10-22 [in Portuguese]

  • Sim-Sim M (1999) The genus Frullania Raddi (Hepaticae) in Portugal and Madeira. Cryptog Bryol 20:83–144

    Article  Google Scholar 

  • Slatyer RA, Hirst M, Sexton JP (2013) Niche breadth predicts geographical range size: a general ecological pattern. Ecol Letters 16:1104–1114

    Article  Google Scholar 

  • Souza JPS, Silva MPP, Pôrto KC (2020) Spatial distribution of functional traits of bryophytes along environmental gradients in an Atlantic Forest remnant in north-eastern Brazil. Pl Ecol Diversity 13:93–104

    Article  Google Scholar 

  • Stegmann UE (2020) A willow drawing from 1786: the earliest depiction of intraspecific trait variation in plants? Ann Bot (Oxford) 127:411–412

    Article  Google Scholar 

  • Valladares F (2017) A mechanistic view of the capacity of forests to cope with climate change. In Bravo F, Jandl R, LeMay V, Gadow K (eds) Managing forest ecosystems: the challenge of climate change. Springer-Verlag, Berlin

  • Vasseur F, Exposito-Alonso M, Ayala-Garay OJ, Wang G, Enquist BJ, Vile D, Violle C, Weigel D (2018) Adaptive diversification of growth allometry in the plant Arabidopsis thaliana. Proc Natl Acad Sci USA 115:3416–3421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veloso HP, Rangel-Filho ALR, Lima JCA (1991) Classificação da vegetação brasileira, adaptada a um sistema universal [Classification of Brazilian vegetation, adapted to a universal system] Ministério da Economia, Fazenda e Planejamento. Fundação Instituto Brasileiro de Geografia e Estatística, Diretoria de Geociências, Departamento de Recursos Naturais e Estudos Ambientais [in Portuguese]

  • Violle C, Enquist BJ, McGill BJ, Jiang LIN, Albert CH, Hulshof C, Jung V, Messier J (2012) The return of the variance: intraspecific variability in community ecology. Trends Ecol Evol 27:244–252

    Article  PubMed  Google Scholar 

  • Vitt DH, Crandall-Stotler B, Wood A (2014) Bryophytes: survival in a dry world through avoidance and tolerance. In Rajakaruna N, Boyd R, Harris T (eds) Plant ecology and evolution in harsh environments. Nova Publishers, Nova York

  • Westerband AC, Funk JL, Barton KE (2021) Intraspecific trait variation in plants: a renewed focus on its role in ecological processes. Ann Bot (Oxford) 127:397–410

    Article  CAS  Google Scholar 

  • Zhu R, So ML (2001) Epiphyllous liverworts of China. Nova Hedwigia, Berlin

    Google Scholar 

  • Zuur AF, Ieno EN, Smith GM (2007) Analyzing ecological data. Statistics for biology and health. Springer, New York

Download references

Acknowledgements

We thank Karina Vieiralves Linhares and Weber Andrade de Girão e Silva for their support during fieldwork. We also thank the two anonymous referees for their helpful comments and constructive remarks on this manuscript.

Funding

Funding was provided by the Coordination for the Improvement of Higher Education Personnel – Brazil (CAPES, Financial Code 001, Masters grant to W.V.S.M.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mércia P. P. Silva.

Ethics declarations

Conflicts of interest / Competing interests (include appropriate disclosures)

The authors have not disclosed any competing interests.

Ethics approval (include appropriate approvals or waivers)

Not applicable

Consent to participate (include appropriate statements)

Not applicable

Consent for publication (include appropriate statements)

Not applicable

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, M.P.P., Araújo, A.C.F., Souza, J.P.S. et al. Do local environmental conditions affect intraspecific trait variance? Insights from liverwort populations in ecological refuges. Folia Geobot 58, 191–204 (2023). https://doi.org/10.1007/s12224-024-09439-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12224-024-09439-8

Keywords

Navigation