Skip to main content
Log in

Habitat and population structure of rare and endemic Andean Espeletia pycnophylla subsp. llanganatensis (Asteraceae) in an Ecuadorian biodiversity hotspot

  • Published:
Folia Geobotanica Aims and scope Submit manuscript

Abstract

High-elevation neotropical environments of the Andes include the Páramo, a biodiversity hotspot with fast speciation rates. The genus Espeletia is distinctive of this ecosystem in the northern Andes. Its southern distribution limit lies in Ecuador, with the endemic E. pycnophylla subsp. llanganatensis being the only known representative south of the equator. This study presents the distribution, population structure and co-occurring flora of the subspecies llanganatensis in the Valle de los Frailejones (VFL), Cordillera de los Llanganates. Four clusters totalling ~ 20 ha could be identified at elevations of 3400–3550 m above sea level. Espelatia pycnophylla subsp. llanganatensis occurred amidst the sub-Páramo upper elevational limits of montane forests and within transitional areas between forest margins and waterlogged terrains. This habitat preference was a distinguishing ecological difference to the nearest (200 km) congener, E. pycnophylla subsp. angelensis. Plants (N = 781 measured) were skewed towards the smallest size classes ≤ 20 cm (28% of the population, including 17% recruits ≤ 10 cm) and reaching a total plant height of 900 cm. Synflorescences were observed in specimens ≥ 110 cm and in 51% of the mature population. The oldest specimens grew on terrains with higher edaphic stability. While local recruitment appears healthy, geographic distribution is limited suggesting vulnerability to local extinction. Co-occurring vegetation encompassed ~ 70 species, with grasses (Poaceae) and mosses (Bryophyta) dominating the ground cover, resulting in homogenous vegetation. Although E. pycnophylla subsp. llanganatensis is currently not exposed to direct human disturbance, clandestine mining activities intruding the region pose a potential threat to the survival of this Ecuadorian endemic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Allen S (1974) Chemical analysis of ecological materials. Blackwell Scientifc, 565 pp

  • Anderson JM, Ingram JSL (1993) Tropical soil biology and fertility: a handbook of methods (2nd edition). Wallinford, UK: CAB International, 298 pp

  • Andrade Marín LA (1936) Viaje a las misteriosas montañas de Llanganati. Ecuadorian Institute of Natural Sciences, Quito.

  • Anhalzer JJ (2017) Llanganati. Imprenta Mariscal, Quito, 252 pp

  • Baruch Z (1984) Ordination and classification of vegetation along an altitudinal gradient in the Venezuelan páramos. Vegetatio 255:115–126

    Article  Google Scholar 

  • Benavides F, Burbano J, Burbano D, Prieto R, Torres C (2007) The effect of altitudinal gradient on autecological features of Espeletia pycnophylla ssp. angelensis Cuatrec. (Asteraceae) in the Páramo “El Infiernillo” (Nariño-Colombia). Actual Biol 29:41–53

    Google Scholar 

  • Benavides IF, Burbano J, Burbano D, Prieto R, Torres C (2010) Inferring possible population divergence in Espeletia pycnophylla (Asteraceae) through morphometric and paleogeographic approaches. Rev Biol Trop 58, 1260-1270

  • Berry, PE, Calvo, RN (1989) Wind pollination, self-incompatibility, and altitudinal shifts in pollination systems in the high Andean genus Espeletia (Asteraseae). Amer J Bot 76:1602–1614

    Article  Google Scholar 

  • Berry PE, Calvo RN (1994) An overview of the reproductive biology of Espeletia (Asteraceae) in the Venezuelan Andes. In PW Rundel, AP Smith, FC Meinzer (eds) Tropical alpine environments. Plant form and function. Cambridge University Press, pp 229–250

  • Borcard D, Gillet F, Legendre P (2011) Numerical ecology with R. Springer

  • Bridle JR, Vines TH (2007) Limits to evolution at range margins: When and why does adaptation fail? Trends Ecol Evol 22:140–147

    Article  PubMed  Google Scholar 

  • Bouyoucos GJ (1962) P hydrometer method improved for making particle size analyses of soil. Agron J 54:464–465

    Article  Google Scholar 

  • Brenmer J (1965) Inorganic forms of nitrogen. In Black C (ed) Methods of soil analysis. Part. II. Madison, WI. ASA, pp 1179–1237

  • Buytaert W, Beven K (2011) Models as multiple working hypotheses: hydrological simulation of tropical alpine wetlands. Hydrol Processes 25:1784–1799

    Article  Google Scholar 

  • Buytaert W, Cuesta F, Tobon C (2011) Potential impacts of climate change on the environmental services of humid tropical alpine regions. Global Ecol Biogeogr 20:19–33

    Article  Google Scholar 

  • Cárdenas MF, Tobón C, Rock BN (2018) Ecophysiology of frailejones (Espeletia spp.), and its contribution to the hydrological functioning of Páramo ecosystems. Pl Ecol 219:185–198

    Article  Google Scholar 

  • Cavelier J, Machado JL, Valenvia D, Montoya J, Lagnelet A, Hurtado A, Varela A, Mekia C (1992) Leaf demography amd growth rates of Espeletia barclayana Cuatrec. (Compositae), a Caulescent Rosette in a Colombian Páramo. Biotropica 24:52–63

    Article  Google Scholar 

  • Cortés AJ (2013) On the origin of the common bean (Phaseolus vulgaris L.). Amer J Pl Sci 4:1998–2000

    Article  Google Scholar 

  • Cortés AJ (2015) On the big challenges of a small shrub: ecological genetics of Salix herbacea L. Uppsala: Acta Universitatis Upsaliensis

    Google Scholar 

  • Cortés AJ, Blair MW (2018) Naturally available genetic adaptation in common bean and its response to climate change. In Srinivasarao C, Shanker AK, Shanker C (eds) Climate-resilient agriculture – strategies and perspectives. InTech Rijeka

  • Cortés AJ, Garzón LN, Valencia JB, Madriñán S (2018) On the causes of rapid diversification in the Páramos: isolation by ecology and genomic divergence in Espeletia. Frontiers Pl Sci 9:1700

    Article  PubMed  PubMed Central  Google Scholar 

  • Cortés AJ, Waeber S, Lexer C, Sedlacek J, Wheeler JA, Van Kleunen M et al. (2014) Small-scale patterns in snow melt timing affect gene flow and the distribution of genetic diversity in the alpine dwarf shrub Salix herbacea. Heredity 113 233–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cortés AJ, Wheeler JA (2018) The environmental heterogeneity of mountains at a fine scale in a changing world. In Hoorn C, Perrigo A, Antonelli A (eds) Mountains, climate, and biodiversity. Wiley, New York

  • Cross SK (2001) Adaptation of the giant rosette plant, Espeletia pycnophylla subsp. angelensis, to ultraviolet radiation over an elevation gradient on Volcán Chiles. In Ramsay PE (ed) The ecology of Volcán Chiles: high-altitude ecosystems on the Ecuador–Colombia border. Pebble and Shell Publications, Plymouth, pp 81–90

    Google Scholar 

  • Cruden RW (1972) Pollinators in high-elevation ecosystems: relative effectiveness of birds and bees. Science 176:1439–1440

    Article  CAS  PubMed  Google Scholar 

  • Cuatrecasas J (1968) Páramo vegetation and its life forms. Colloq Geographicum 9:163–186

    Google Scholar 

  • Cuatrecasas J (2013) A systematic study of the subtribe Espeletiinae: Heliantheae, Asteraceae. The New York Botanical Garden, New York

  • Cuesta F, Muriel P, Llambí LD, Halloy S, Aguirre N, Beck S, et al. (2017) Latitudinal and altitudinal patterns of plant community diversity on mountain summits across the tropical Andes. Ecography 40:1381–1394

    Article  Google Scholar 

  • Cuddington K (2012) Ecosystem engineers. In Hastings A, Gross LJ (eds) Encyclopedia of theoretical ecology. University of California Press, Berkeley and Los Angeles, pp 230–234

  • Curiel Yuste J, Hereş, AM, Ojeda G, Paz A, Pizano C, García-Angulo D, et al. (2017) Soil heterotrophic CO2 emissions from tropical high-elevation ecosystems (Páramos) and their sensitivity to temperature and moisture fluctuations. Soil Biol Biochem 110:8–11

    Article  CAS  Google Scholar 

  • Davies TJ, Savolainen V, Chase MW, Moat J, Barraclough TG (2004) Environmental energy and evolutionary rates in flowering plants. Proc Roy Soc Biol Sci Ser B 271:2195–2200

    Article  Google Scholar 

  • Diazgranados M (2012) A nomenclator for the frailejones (Espeletiinae Cuatrec., Asteraceae). PhytoKeys 16:1–52

  • Diazgranados M, Castellanos-Castro C (2021) Frailejones en peligro. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, 117 pp

  • Emck P (2007) A climatology of South Ecuador with special focus on the Major Andean Ridge as Atlantic–Pacific climate divide. Friedrich-Alexander-Universität Erlangen-Nürnberg, Dissertation, 275 pp

  • Fagua JC, Gonzalez VH (2007) Growth rates, reproductive phenology, and pollination ecology of Espeletia grandiflora (Asteraceae), a giant Andean caulescent rosette. Pl Biol 9:127–135

    Article  CAS  PubMed  Google Scholar 

  • Flantua S, Hooghiemstra H (2018) Historical connectivity and mountain biodiversity. In Hoorn C, Antonelli A, Perrigo A (eds) Mountains, climate, and biodiversity. Wiley, New York, pp 171–186

  • Foley PM (2001) Morphological and biochemical adaptations to UV-B exposure in the Andean giant rosette plant, Espeletia pycnophylla subsp. angelensis. In Ramsay PE (ed) The Ecology of Volcán Chiles: high-altitude ecosystems on the Ecuador–Colombia border. Pebble and Shell Publications, Plymouth, pp 91–100

    Google Scholar 

  • Hofstede RGM, Jongsma W (1997) La forestación con especies exóticas y nativas en los Andes del Ecuador: presentación preliminar de los resultados del proyecto EcoPar. Informe Proyecto de Investigaciones sobre la Ecología de Páramos y Bosques Andinos (ECOPAR), Quito, Universidad de Amsterdam, y Larenstein Colegio Universitario Internacional, Velp, The Netherlands

  • Holt MJC (2001) Surface leaf structures of the giant rosette plant, Espeletia pycnophylla subsp. angelensis. In Ramsay PE (ed) The ecology of Volcán Chiles: high-altitude ecosystems on the Ecuador–Colombia border. Pebble and Shell Publications, Plymouth, pp 75–80

    Google Scholar 

  • Hossner LR (2020) Dissolution for Total Elemental Analysis. In (eds) Sparks DL, Page AL, Helmke PA, Loeppert, RH Methods of soil analysis, part 3: Chemical Methods Vol. 14 John Wiley & Sons pp 49–64

  • Hughes CE (2017) Are there many different routes to becoming a global biodiversity hotspot? Proc Natl Acad Sci 114:4275–4277

    Article  CAS  Google Scholar 

  • Kappelle, M, Horn SP (2016) The paramo ecosystem of Costa Rica's highlands. In Kappelle M (ed) Costa Rican ecosystems. The University of Chicago Press. Chicago, pp 492–523

    Chapter  Google Scholar 

  • Kleemann J, Koo H, Hensen I, Mendieta-Leiva G, Kahnt B, Kurze C, et al. (2022) Priorities of action and research for the protection of biodiversity and ecosystem services in continental Ecuador. Biol Conservation 265:109404

  • Kovář P (2001) Effects of burning on Espeletia pycnophylla stands in the Páramo of Volcán Chiles, Ecuador, a short-term case. In Ramsay PM (ed) The ecology of Volcan Chiles: high-altitude ecosystems on the Ecuador–Colombia border. Pebble & Shell, Plymouth, pp 113–118

  • Loaiza-Usuga JC, Lis-Gutiérrez M, Rubiano-Sanabria Y (2021) Land use and environmental changes in the Andean Páramo soils. In Nistor MM (ed) Climate and land use impacts on natural and artificial systems. Elsevier

  • León–Yánez S, Valencia R, Pitman N, Endara L, Ulloa C, Navarrete H (2011) Libro Rojo de las especies endémicas de Ecuador (2a edición). Publicaciones del Herbario QCA, Pontificia Universidad Católica del Ecuador, Quito

  • Luteyn JL (1999) Paramos: a checklist of plant diversity, geographic distribution and botanical literature. Memoirs New York Bot Garden 84:1–278

    Google Scholar 

  • Luteyn JL, Cleef AM, Rangel O (1992) Plant diversity in paramo: towards a checklist of paramo plants and a generic flora. In Balslev H, Luteyn JL (eds) Páramo: an Andean ecosystem under human influence. Academic Press, London, pp 71–84

    Google Scholar 

  • Madriñán S, Cortés AJ, Richardson JE (2013) Páramo is the world’s fastest evolving and coolest biodiversity hotspot. Frontiers Genet 4:192

    Article  PubMed  PubMed Central  Google Scholar 

  • Mavárez J (2019) A taxonomic revision of Espeletia (Asteraceae). The Venezuelan radiation. Harvard Pap Bot 24:131–244

    Article  Google Scholar 

  • Marávez J (2021) A taxonomic revision of Espeletia (Asteraceae). II. Updated list of taxa, nomenclature, and conservation status in the Colombian radiation. Harvard Pap Bot 26:131–157

    Google Scholar 

  • Mittermeier RA, Turner WR, Larsen, FW, Brooks, TM, Gascon C (2011) Global biodiversity conservation: the critical role of hotspots. In Biodiversity hotspots. Springer, Berlin, Heidelberg, pp 3–22

  • Mora-Osejo LE (2001) Contribuciones al estudio comparativo de la conductancia y de la transpiración foliar de especies de plantas del Páramo. Academia Colombiana de Ciencias Exactas, Físicas y Naturales, Colección Jorge Alvarez Lleras No 17, 281 pp

  • Noboa SA (2019) Height estimation of frailejones (Espeletia pycnophylla) in the Chiles Volcano using UAV (Carchi – Ecuador). Dissertation, University of Salzburg.

  • Noh JK, Echeverria C, Kleemann J, Koo H, Fürst C, Cuenca P (2020) Warning about conservation status of forest ecosystems in tropical Andes: national assessment based on IUCN criteria. PLoS ONE 15:e0237877

  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinnet D, et al. (2017) Vegan: community ecology package. R package version 2.4-2. Available at https://CRAN.R-project.org/package=vegan (Accessed 05 May 2022)

  • Permauer J M (1999) Efecto de diferentes regímenes de disturbio por quema y pastoreo sobre la estructura horizontal y vertical de la vegetación de paramo. Parque Nacional Natural Chingaza. Thesis, Universidad Nacional de Colombia, Bogotá

  • Peyre G, Lenoir J, Karger DN, Gomez M, Gonzalez A, Broennimann O, Guisan A (2020) The fate of páramo plant assemblages in the sky islands of the northern Andes. J Veg Sci 31:967–980

    Article  Google Scholar 

  • Peyre G (2021) Terrestrial biodiversity hotspots: challenges and opportunities. In Leal Filho W, Azul AM, Brandli L, Lange Salvia A, Wall T (eds) Encyclopaedia of the UN Development Goals. Springer Nature. Available at https://doi.org/10.1007/978-3-319-71065-5

  • Peyre G (2022) What does the future hold for Páramo plants? A modelling approach. Frontiers Ecol Evol 10:896387

  • Pouchon C, Fernández A, Nassar JM, Boyer F, Aubert S, Lavergne S, Mavárez J (2018) Diversification of the giant rosettes of the Espeletia complex (Asteraceae). A phylogenomic analysis of an explosive adaptive radiation in the Andes. Syst Biol 67:1041–1060

    Article  CAS  PubMed  Google Scholar 

  • R Development Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at http://www.R-project.org (Accessed 5 May 2022)

  • Ramsay PM (2001) The zonal páramo vegetation of Volcán Chiles. In Ramsay PE (ed) The ecology of Volcán Chiles: high-altitude ecosystems on the Ecuador–Colombia border. Pebble and Shell Publications, Plymouth, pp 27–38

    Google Scholar 

  • Ramsay PM, Michell P (2001) The causes of leaning in Espeletia pycnophylla subsp. angelensis. In Ramsay PE (ed) The ecology of Volcán Chiles: high-altitude ecosystems on the Ecuador–Colombia border. Pebble and Shell Publications, Plymouth, pp 191–124

    Google Scholar 

  • Rangel-Churio JO (2006) The biodiversity of the Colombian páramo region and its relation to antropogenic impact. In Lieberman SEM, Körner C (eds) Land use change and mountain biodiversity. CRC Press. Taylor & Francis Group, pp 103‒118

    Google Scholar 

  • Rauscher JT (2002) Molecular phylogenetics of the Espeletia complex (Asteraceae): evidence from nrDNA its sequences on the closest relatives of an Andean adaptive radiation. Amer J Bot 89:1074–1084

    Article  CAS  PubMed  Google Scholar 

  • Sanchez AM (2004) Análisis morfométrico y demográfico de Espeletia pycnophylla Cuatrecasas. En un gradiente altitudinal, Provincia Carchi – Ecuador. Dissertation, Universidad de los Andes, Bogotá

  • Sklenář P, Hedberg I, Cleef AM (2014) Island biogeography of tropical alpine floras. J Biogeogr 41 287–297

    Article  Google Scholar 

  • Smith AP (1981) Growth and population dynamics of Espeletia (Compositae) in the Venezuelan Andes. Smithsonian Conr Bot 48:1–48

  • Spruce R (1861) On the mountains of Llanganati, in the Eastern Cordillera of the Quitonian Andes, illustrated by a map constructed by the late Don Atanasio Guzman. J Roy Geogr Soc London 31:163–184

    Article  Google Scholar 

  • Sturm H (1989) Beziehungen zwischen den Blüten einiger hochandiner Wollschopfpflanzen (Espeletiinae, Asteraceae) und Insekten. Stud Neotrop Fauna Environm 24:137–155

    Article  Google Scholar 

  • Thompson JB, Zurita-Arthos L, Müller F, Chimbolema S, Suárez E (2021) Land use change in the Ecuadorian páramo: the impact of expanding agriculture on soil carbon storage. Arctic, Antarc Alpine Res 53:48–59

    Article  Google Scholar 

  • UN (2020) The sustainable development goals report. Available at https://unstats.un.org/sdgs/report/2020 (Accessed 25 January 2022)

  • Valencia JB, Mesa J, León JG, Madriñán S, Cortés AJ (2020) Climate vulnerability Assessment of the Espeletia Complex on Páramo Sky Islands in the Northern Andes. Frontiers Ecol Evol 8:565708

  • Vargas H, Neill D, Asanza M, Freire-Fierro A, Narvdez E (2000) Vegetación y flora del Parque Nacional Llanganates. In Vázquez MA, Larrea M, Suárez L (eds) Biodiversidad en el Parque Nacional Llanganates: un reporte de las evaluaciones ecológicas y socioeconómicas rápidas. EcoCiencia, Ministerio del Ambiente, Herbario Nacional del Ecuador, Museo Ecuatoriano de Ciencias Naturales e Instituto Internacional de Reconstrucción Rural, Quito

  • Venegas Carillo S A (2011) Evaluación de tasas de crecimiento de Espeletia grandiflora Humb. & Bonpl. en tres elevaciones en el Parque Nacional Natural Chingaza. Thesis Pontificia Universidad Javeriana, Bogotá

  • Verweij PA, Kok K (1992) Effects of fire and grazing on Espeletia hartwegiana populations. In Balslev H, Luteyn JL (eds) Páramo: an Andean ecosystem under human influence. Academic Press, London, pp 215–229

    Google Scholar 

  • Verweij PA, Beekman AM (1995) Elementos para el manejo del páramo colombiano en relación a pastoreo, quema y cultivo de papa. In Rabey MA (ed) El uso de los recursos naturales en las montañas: tradición y transformación. UNESCO/MAB, Montevideo, pp 101–109

  • Verweij PA, Beukema H (1992) Aspects of human influence on upper Andean forest line vegetation. In Balslev H and Luteyn JL (eds) Páramo: an Andean ecosystem under human influence. Academic Press, London, pp 171–175

  • Watable F, Olsen S (1965) Test of acid ascorbic methods for determining phosphorus in water and NaHCO3 extracts from soil. Soil Sci Soc Amer Proc 29:677–678

    Article  Google Scholar 

  • Willis KJ, Bennett KD, Birks HJB (2009) Variability in thermal and UV-B energy fluxes through time and their influence on plant diversity and speciation. J Biogeogr 36:1630–1644

    Article  Google Scholar 

  • Zomer MA, Ramsay TM (2020) Post-fire changes in plant growth form composition in Andean páramo grassland. Appl Veg Sci 24:e12554

    Article  Google Scholar 

Download references

Acknowledgements

S.C.C. Steiner (SS) and P. Lozano (PL) conceived and executed the expedition along the Cordillera de los Llanganates and collected the field data and specimens. Espeletia photographs were taken by SS. All authors financed the expedition with personal funds and jointly prepared the manuscript. We express our deep gratitude to our guide O. Haro and his team members S. Haro, R. Granda and G. Lescano from San José de Poaló. The expedition would not have been possible without their help. PL was assisted by M. L. Roa. Research and collection permits were granted to PL and SS by the Ministry of the Environment, Ecuador: N 15-20-IC-FAU/FLO-DPAN/MA. The satellite image from the Valle de los Frailejones was provided by A. Navarrete from the Instituto Geográfico Militar, Quito. Soil samples analyses were kindly provided by C. Bravo (Univ. Estatal Amazónica) Our sincere thanks also go to J. Schönenberger and the anonymous reviewers for valuable comments on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Sascha Steiner and Pablo Lozano designed and executed the expedition and data collection. Data analyses were performed by Sascha Steiner, Bernhard Riegl and Pablo Lozano. The first draft of the manuscript was written by Sascha Steiner, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to S. C. C. Steiner.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 335 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Steiner, S.C.C., Riegl, B. & Lozano, P. Habitat and population structure of rare and endemic Andean Espeletia pycnophylla subsp. llanganatensis (Asteraceae) in an Ecuadorian biodiversity hotspot. Folia Geobot 58, 55–69 (2023). https://doi.org/10.1007/s12224-023-09431-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12224-023-09431-8

Keywords

Navigation