Skip to main content
Log in

Three phylogenetically distant shade-tolerant temperate forest herbs have similar seed germination syndromes

  • Published:
Folia Geobotanica Aims and scope Submit manuscript

Abstract

Plants growing in the same environment typically share ecophysiological characteristics enabling them to survive and reproduce when exposed to a common selection pressure. As such, seedlings establishing in temperate forest habitats cope with similar issues of low light availability and climate seasonality. We examined similarities in the germination syndromes in three shade-tolerant temperate forest herbs, Allium ursinum (Amaryllidaceae), Mercurialis perennis (Euphorbiaceae) and Dioscorea communis (Dioscoreaceae) with a distant phylogenetic affiliation. Seeds of M. perennis and A. ursinum are dispersed in spring and those of D. communis in autumn. Experiments on phenology of seed germination and seedling emergence in natural conditions revealed that seeds of all three species germinate in the following autumn. Seedlings do not emerge immediately but rather remain below the soil surface until late winter or early spring. Experiments in controlled laboratory conditions showed that seeds germinated best at intermediate autumn or spring temperatures (between 10 and 15°C) following a period at high summer temperatures (around 20°C). Seed germination of Allium ursinum is strongly photoinhibited, while moderate photoinhibition and no photoinhibition at all was observed in Dioscorea communis and Mercurialis perennis, respectively. Although seeds of all three species are endospermic at dispersal, no embryo growth prior to germination was observed. The cotyledons functioned as a haustorium, recuperating the nutrient reserves in the endosperm post-germination. It can be concluded that although phylogenetically unrelated, the three species studied show a remarkable similarity in germination and seedling emergence strategy that is commonly observed in plants adapted to growing in shady conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Angevine MW, Chabot BF (1979) Seed germination syndromes in higher plants. In Solbrig OT, Jain S, Johnson GB, Raven PH (eds) Topics in plant population biology. Palgrave, London, pp 188–206

    Google Scholar 

  • Barton LV (1933) Seedling production in tree peony. Contr Boyce Thompson Inst Pl Res 5:451–460

    Google Scholar 

  • Barton LV, Schroeder, EM (1942) Dormancy in seeds of Convallaria majalis L. and Smilacina racemosa. Contr Boyce Thompson Inst Pl Res 12:277–300

    Google Scholar 

  • Baskin JM, Baskin CC (1985) Epicotyl dormancy in seeds of Cimicifuga racemosa and Hepatica acutiloba. Bull Torrey Bot Club 112:253–257

    Article  Google Scholar 

  • Baskin CC, Baskin JM (1988) Germination ecophysiology of herbaceous plant species in a temperate region. Amer J Bot 75:286–305

    Article  Google Scholar 

  • Baskin JM, Baskin CC (2004) A classification system for seed dormancy. Seed Sci Res 14:1–16

    Article  Google Scholar 

  • Baskin CC, Baskin JM (2014) Seeds. Ecology, biogeography, and evolution. 2nd Ed. Academic Press, San Diego

    Google Scholar 

  • Bierzychudek P (1982) Life histories and demography of shade-tolerant temperate forest herbs: a review. New Phytol 90:757–776

    Article  Google Scholar 

  • Burkill IH (1939) The trigger-mechanism in the germination of the seed of Tamus communis Linn. J Bot 77:44–50

    Google Scholar 

  • Burkill IH (1944) Biological flora of the British Isles. Tamus communis J Ecol 32:121–129

    Article  Google Scholar 

  • Carta A, Probert R, Moretti M, Peruzzi L, Bedini, G (2014) Seed dormancy and germination in three Crocus ser. verni species (Iridaceae): implications for evolution of dormancy within the genus. Pl Biol 16:1065–1074

    CAS  Google Scholar 

  • Carta A, Hanson S, Müller JV (2016) Plant regeneration from seeds responds to phylogenetic relatedness and local adaptation in Mediterranean Romulea (Iridaceae) species. Ecol Evol 6:4166–4178

    Article  PubMed  PubMed Central  Google Scholar 

  • Carta A, Skourti E, Mattana E, Vandelook F, Thanos CA (2017) Photoinhibition of seed germination: occurrence, ecology and phylogeny. Seed Sci Res 27:131–153

    Article  Google Scholar 

  • Commander LE, Merritt DJ, Rokich DP, Dixon KW (2009) The role of after-ripening in promoting germination of arid zone seeds: a study on six Australian species. Bot J Linn Soc 161:411–421

    Article  Google Scholar 

  • Copete E, Herranz JM, Ferrandis P, Baskin CC, Baskin JM (2011) Physiology, morphology and phenology of seed dormancy break and germination in the endemic Iberian species Narcissus hispanicus (Amaryllidaceae). Ann Bot (Oxford) 107:1003–1016

    Article  Google Scholar 

  • Crocker W (1916) Mechanics of dormancy in seeds. Amer J Bot 3:99–120

    Article  Google Scholar 

  • Ensslin A, Van de Vyver A, Vanderborght T, Godefroid S (2018). Ex situ cultivation entails high risk of seed dormancy loss on short-lived wild plant species. J Appl Ecol 55:1145–1154

    Article  Google Scholar 

  • Ernst WHO (1979) Population biology of Allium ursinum in northern Germany. J Ecol 67:347–362

    Article  Google Scholar 

  • Findeis M (1917) Über das Wachstum des Embryos im ausgesäeten Samen vor der Keimung. Sitzungsber Akad Wiss Math-Naturwiss Kl 126:77–102

    Google Scholar 

  • Fox JF (1982) Adaptation of gray squirrel behavior to autumn germination by white oak acorns. Evolution 36:800–809

    Article  CAS  PubMed  Google Scholar 

  • Hermy M, Honnay O, Firbank L, Grashof-Bokdam C, Lawesson JE (1999) An ecological comparison between ancient and other forest plant species of Europe, and the implications for forest conservation. Biol Conservation 91:9–22

    Article  Google Scholar 

  • Hodgson JG, Mackey JML (1986) The ecological specialization of dicotyledonous families within a local flora: some factors constraining optimization of seed size and their possible evolutionary significance. New Phytol 104:497–515

    Article  Google Scholar 

  • Hoffman CA (1933) Developmental morphology of Allium cepa. Bot Gaz 95:279–299

    Article  Google Scholar 

  • Jankowska-Blaszczuk M, Daws MI (2007) Impact of red: far red ratios on germination of temperate forest herbs in relation to shade tolerance, seed mass and persistence in the soil. Funct Ecol 21:1055–1062

    Article  Google Scholar 

  • Jefferson RG (2008) Biological Flora of the British Isles: Mercurialis perennis L. J Ecol 96:386–412

    Article  Google Scholar 

  • Klimešová J, Martínková J, Ottaviani G (2018) Belowground plant functional ecology: towards an integrated perspective. Funct Ecol 32:2115–2126

    Article  Google Scholar 

  • Kondo T, Narita M, Phartyal SS, Hidayati SN, Walck JL, Baskin JM, Baskin CC (2015) Morphophysiological dormancy in seeds of Convallaria keiskei and a proposal to recognize two types of double dormancy in seed dormancy classification. Seed Sci Res 25:210–220

    Article  Google Scholar 

  • Krähenbühl M, Yuan YM, Küpfer P (2002). Chromosome and breeding system evolution of the genus Mercurialis (Euphorbiaceae): implications of ITS molecular phylogeny. Pl Syst Evol 234:155–169

    Article  Google Scholar 

  • Lakon 1911 Beiträge zur forstlichen Samenkunde. II. Zur Anatomie und Keimungsphysiologie der Eschensamen. Naturwoss Z Forst- Landw 9:285

    Google Scholar 

  • Lawton JRS, Lawton JR (1967) The morphology of the dormant embryo and young seedling of five species of Dioscorea from Nigeria. Proc Linn Soc London 178:153–159

    Article  Google Scholar 

  • Li QQ, Zhou SD, He XJ, Yu Y, Zhang YC, Wei XQ (2010) Phylogeny and biogeography of Allium (Amaryllidaceae: Allieae) based on nuclear ribosomal internal transcribed spacer and chloroplast rps16 sequences, focusing on the inclusion of species endemic to China. Ann Bot (Oxford) 106:709–733

    Article  CAS  Google Scholar 

  • Magyar L, Lukács D (2002) Germination and emergence of annual mercury (Mercurialis annua L.). Z Pflanzenkrankh Pflanzenschutz 18:197–203

    Google Scholar 

  • Martin AC (1946) The comparative internal morphology of seeds. Amer Midl Naturalist 36:513–660

    Article  Google Scholar 

  • Mondoni A, Probert R, Rossi G, Hay F, Bonomi C (2008). Habitat-correlated seed germination behaviour in populations of wood anemone (Anemone nemorosa L.) from northern Italy. Seed Sci Res 18:213–222

    Article  Google Scholar 

  • Mukerji SK (1936) Contributions to the autecology of Mercurialis perennis L. Parts I–III. J Ecol 24:38–81

    CAS  Google Scholar 

  • Newton RJ, Hay FR, Ellis RH (2013) Seed development and maturation in early spring-flowering Galanthus nivalis and Narcissus pseudonarcissus continues post-shedding with little evidence of maturation in planta. Ann Bot (Oxford) 111:945–955

    Article  Google Scholar 

  • Okagami N, Kawai M (1977) Dormancy in Dioscorea: gibberellin-induced inhibition or promotion in seed germination of D. tokoro and D. tenuipes in relation to light quality. Pl Physiol 60:360–362

    Article  CAS  Google Scholar 

  • Okagami N, Kawai M (1982) Dormancy in Dioscorea: differences of temperature responses in seed germination among six Japanese species. Bot Mag 95:155–166

    Article  Google Scholar 

  • R Development Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available from http://www.Rproject.org. Accessed 01 June 2018

  • Slade EA, Causton DR (1979) The germination of some woodland herbaceous species under laboratory conditions: a multifactorial study. New Phytol 83:549–557

    Article  Google Scholar 

  • Terui K, Okagami N (1989) Dormancy in Dioscorea: rapid germination of detached embryos from dormant seeds of D. tokoro. Pl Cell Physiol 30:287–293

    Article  CAS  Google Scholar 

  • Terui K, Okagami N (1993) Temperature effects on seed germination of East Asian and Tertiary relict species of Dioscorea (Dioscoreaceae). Amer J Bot 80:493–499

    Article  Google Scholar 

  • Thanos CA, Georghiou K, Douma DJ, Marangaki CJ (1991) Photoinhibition of seed germination in Mediterranean maritime plants. Ann Bot (Oxford) 68:469–475

    Article  Google Scholar 

  • Thompson K, Hodkinson DJ (1998) Seed mass, habitat and life history: a re-analysis of Salisbury (1942, 1974). New Phytol 138:163–167

    Article  Google Scholar 

  • Tutin TG (1957) Biological flora of the British Isles. Allium ursinum L. J Ecol 45:1003–1010

    Article  Google Scholar 

  • Vandelook F, Van Assche JA (2008a). Temperature requirements for seed germination and seedling development determine timing of seedling emergence of three monocotyledonous temperate forest spring geophytes. Ann Bot (Oxford) 102:865–875

    Article  Google Scholar 

  • Vandelook F, Van Assche JA (2008b). Deep complex morphophysiological dormancy in Sanicula europaea (Apiaceae) fits a recurring pattern of dormancy types in genera with an Arcto-Tertiary distribution. Botany 86:1370–1377

    Article  Google Scholar 

  • Vandelook F, Janssens SB, Probert RJ (2012) Relative embryo length as an adaptation to habitat and life cycle in Apiaceae. New Phytol 195:479–487

    Article  PubMed  Google Scholar 

  • Vandelook F, Newton RJ, Carta A (2018) Photophobia in Lilioid monocots: photoinhibition of seed germination explained by seed traits, habitat adaptation and phylogenetic inertia. Ann Bot (Oxford) 121:405–413

    Article  Google Scholar 

  • Walck JL, Baskin CC, Baskin JM (2000) Seeds of Thalictrum mirabile (Ranunculaceae) require cold stratification for loss of nondeep simple morphophysiological dormancy. Canad J Bot 77:1769–1776

    Article  Google Scholar 

  • Whigham DF (2004) Ecology of woodland herbs in temperate deciduous forests. Annual Rev Ecol Evol Syst 35:583–621

    Article  Google Scholar 

  • Wilkin P, Schols P, Chase MW, Chayamarit K, Furness CA, Huysmans S, Rakotonasolo F, Smets E, Thapyai, C (2005) A plastid gene phylogeny of the yam genus, Dioscorea: roots, fruits and Madagascar. Syst Bot 30:736–749

    Article  Google Scholar 

  • Wurdack KJ, Hoffmann P, Chase MW (2005) Molecular phylogenetic analysis of uniovulate Euphorbiaceae (Euphorbiaceae sensu stricto) using plastid rbcL and trnL-F DNA sequences. Amer J Bot 92:1397–1420

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Robin Probert, John Dickie and Rosemary Newton (Royal Botanic Gardens, Kew) for lengthy discussion on notions of the dormancy concept introduced in this manuscript. We thank two anonymous reviewers and the editor for useful suggestions to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filip Vandelook.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vandelook, F., Van de Vyver, A. & Carta, A. Three phylogenetically distant shade-tolerant temperate forest herbs have similar seed germination syndromes. Folia Geobot 54, 73–84 (2019). https://doi.org/10.1007/s12224-019-09346-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12224-019-09346-3

Keywords

Navigation