Skip to main content
Log in

Isolation of endophytic fungi with antimicrobial activity from medicinal plant Zanthoxylum simulans Hance

  • Original Article
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

A Correction to this article was published on 11 May 2021

This article has been updated

Abstract

Fungal endophytes have been found to exist in many plant species and appear to be important to their plant hosts. However, the diversity and biological activities of these fungi remain largely unknown. Zanthoxylum simulans Hance, a popular natural spice and medicinal plant, commonly known as Szechuan pepper or Chinese-pepper, grows on Kinmen Island, Taiwan. In this study, leaf and stem samples of Z. simulans, collected in summer and winter, were screened for antimicrobial and anti-inflammatory metabolite-producing endophytic fungi. A total of 113 endophytic strains were isolated and cultured from Z. simulans, among which 23 were found to possess antimicrobial activity, belonging to six fungal genera: Penicillium (26.09%, 6), Colletotrichum (21.74%, 5), Diaporthe (21.74%, 5), Daldinia (17.39%, 4), Alternaria (8.70%, 2), and Didymella (4.34%, 1). We also found that the number of species with antimicrobial activity and their compositions differed between summer and winter. Our study demonstrated that Z. simulans might contain large and diverse communities of endophytic fungi, and its community composition varies seasonally. In addition, fungal endophytes produce antimicrobial agents, which may protect their hosts against pathogens and could be a potential source of natural antibiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Specimens of fungi after identification were deposited at the Department of Food Science, National Kinmen University, Kinmen, Taiwan, Republic of China. All data generated during the study are interpreted in the manuscript.

Change history

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Araújo KS, Brito VN, Veloso TGR, Leite TS, Pereira OL, Mizubuti ESG, de Queiroz MV (2018) Diversity of culturable endophytic fungi of Hevea guianensis: a latex producer native tree from the Brazilian Amazon. Afr J Microbiol Res 12:953–964

    Google Scholar 

  • Ashour M, Yehia MH, Proksch P (2011) Utilization of agro-industrial by-products for production of bioactive natural products from endophytic fungi. J Nat Prod 4:108–114

    CAS  Google Scholar 

  • Battilani P, Rossi V, Girometta B, Delos M, Rouzet J, André N, Esposito S (2003) Estimating the potential development of Diaporthe helianthi epidemics in Italy. Bull OEPP 33:427–431

    Google Scholar 

  • Biourge P (1923) Les moisissures du groupe Penicillium. Cellule 33:7–331

    Google Scholar 

  • Borquaye LS, Darko G, Oklu N, Anson-Yevu C, Ababio A (2016) Antimicrobial and antioxidant activities of ethyl acetate and methanol extracts of Littorina littorea and Galatea paradoxa. Cogent Chem 2:1161865

    Google Scholar 

  • Bunalema L, Fotso GW, Waako P, Tabuti J, Yeboah SO (2017) Potential of Zanthoxylum leprieurii as a source of active compounds against drug resistant Mycobacterium tuberculosis. BMC Complement Altern Med 17:89

    PubMed  PubMed Central  Google Scholar 

  • Chen YH, Kuo J, Sung PJ, Chang YC, Lu MC, Wong TY, Liu JK, Weng CF, Twan WH, Kuo FW (2012) Isolation of marine bacteria with antimicrobial activities from cultured and field-collected soft corals. World J Microbiol Biotechnol 28:3269–3279

    CAS  PubMed  Google Scholar 

  • Chi WC, Pang KL, Chen WL, Wang GJ, Lee TH (2019) Antimicrobial and iNOS inhibitory activities of the endophytic fungi isolated from the mangrove plant Acanthus ilicifolius var. xiamenensis. Bot Stud 60:4

  • Chyau CC, Mau JL, Wu CM (1996) Characteristics of the steam-distilled oil and carbon dioxide extract of Zanthoxylum simulans fruits. J Agr Food Chem 44:1096–1099

    CAS  Google Scholar 

  • Costa RS, Filho OPS, DiasJúnior OCS, Silva JJ, Hyari ML, Santos MAV, Velozo ES (2018) In vitro antileishmanial and antitrypanosomal activity of compounds isolated from the roots of Zanthoxylum tingoassuiba. Rev Bras Farmacogn 28:551–558

    CAS  Google Scholar 

  • Cui JL, Guo SX, Xiao PG (2011) Antitumor and antimicrobial activities of endophytic fungi from medicinal parts of Aquilaria sinensis. J Zhejiang Univ Sci B 12:385–392

    CAS  PubMed  PubMed Central  Google Scholar 

  • De Bary A (1879) Die Erscheinung der Symbiose. In: Trubner KJ (ed) Vortrag auf der Versammlung der Naturforscher und Ärtze zu Cassel. Verlag, Strassburg, pp 1–30

    Google Scholar 

  • de Siqueira VM, Conti R, de Araújo JM, Souza-Motta CM (2011) Endophytic fungi from the medicinal plant Lippia sidoides Cham. and their antimicrobial activity. Symbiosis 53:89–95

    CAS  Google Scholar 

  • de Souza Sebastianes FL, Romao-Dumaresq AS, Lacava PT, Harakava R, Azevedo JL, de Melo IS, Pizzirani-Kleiner AA (2013) Species diversity of culturable endophytic fungi from Brazilian mangrove forests. Curr Genet 59:153–166

    PubMed  Google Scholar 

  • Deshmukh SK, Verekar SA, Bhave SV (2014) Endophytic fungi: a reservoir of antibacterials. Front Microbiol 5:715

    PubMed  Google Scholar 

  • Dos Santos IP, da Silva LCN, da Silva MV, de Araújo JM, Cavalcanti Marilene S, Lima VL (2015) Antibacterial activity of endophytic fungi from leaves of Indigofera suffruticosa Miller (Fabaceae). Front Microbiol 6:350

    PubMed  PubMed Central  Google Scholar 

  • Dussart F, Creissen HE, Havis ND (2020) Ramularia collo-cygni – an enemy in waiting. eLS. John Wiley & Sons, Ltd, pp 1–8

  • Ekka G, Jadhav SK, Quraishi A (2020) An Overview of genus Zanthoxylum with special reference to its herbal significance and application. In: Akram M, Ahmad RS (eds) Herbs and spices. IntechOpen, Rijeka, pp 1–17

    Google Scholar 

  • Epifano F, Curini M, Marcotullio MC, Genovese S (2011) Searching for novel cancer chemopreventive plants and their products: the genus Zanthoxylum. Curr Drug Targets 12:1895–1902

    CAS  PubMed  Google Scholar 

  • Gazis R, Chaverri P (2010) Diversity of fungal endophytes in leaves and stems of wild rubber trees (Hevea brasiliensis) in Peru. Fungal Ecol 3:240–254

    Google Scholar 

  • González V, Tello ML (2011) The endophytic mycota associated with Vitis vinifera in central Spain. Fungal Divers 47:29–42

    Google Scholar 

  • Hazen KC (1995) New and emerging yeast pathogens. Clin Microbiol Rev 8:462–478

    CAS  PubMed  PubMed Central  Google Scholar 

  • He W, Van Puyvelde L, De Kimpe N, Verbruggen L, Anthonissen K, Van der Flaas M, Bosselaers J, Mathenge SG, Mudida FP (2002) Chemical constituents and biological activities of Zanthoxylum usambarense. Phytother Res 16:66–70

    CAS  PubMed  Google Scholar 

  • Heinig U, Scholz S, Jennewein S (2013) Getting to the bottom of Taxol biosynthesis by fungi. Fungal Divers 60:161–170

    Google Scholar 

  • Helaly SE, Thongbai B, Stadler M (2018) Diversity of biologically active secondary metabolites from endophytic and saprotrophic fungi of the ascomycete order Xylariales. Nat Prod Rep 35:992–1014

    CAS  PubMed  Google Scholar 

  • Heller A, Gierth K (2001) Cytological observations of the infection process by Phomopsis helianthi (Munt.-Cvet) in leaves of sunflower. J Phytopathol 149:347–357

    Google Scholar 

  • Hormazabal E, Piontelli E (2009) Endophytic fungi from Chilean native gymnosperms: antimicrobial activity against human and phytopathogenic fungi. World J Microbiol Biotechnol 25:813–819

    CAS  Google Scholar 

  • Javier Patino LO, Angelica Prieto RJ, Enrique Cuc SL (2012) Zanthoxylum genus as potential source of bioactive compounds. In: Rasooli I (ed) Bioactive compounds in phytomedicine. InTech Europe, Rijeka, pp 185–218

    Google Scholar 

  • Jia M, Chen L, Xin HL, Zheng CJ, Rahman K, Han T, Qin LP (2016) A friendly relationship between endophytic fungi and medicinal plants: a systematic review. Front Microbiol 7:906

    PubMed  PubMed Central  Google Scholar 

  • Kaul S, Gupta S, Ahmed M, Dhar MK (2012) Endophytic fungi from medicinal plants: a treasure hunt for bioactive metabolites. Phytochem Rev 11:487–505

    CAS  Google Scholar 

  • Kennedy J, Baker P, Piper C, Cotter PD, Walsh M, Mooij MJ et al (2009) Isolation and analysis of bacteria with antimicrobial activities from the marine sponge Haliclona simulans collected from Irish waters. Mar Biotechnol 11:384–396

    CAS  Google Scholar 

  • Khan AL, Kang SM, Dhakal KH, Hussain J, Adnan M, Kim JG, Lee IJ (2013) Flavonoids and amino acid regulation in Capsicum annuum L. by endophytic fungi under different heat stress regimes. Sci Hortic 155:1–7

    CAS  Google Scholar 

  • Kumar V, Kumar S, Singh B, Kumar N (2014) Quantitative and structural analysis of amides and lignans in Zanthoxylum armatum by UPLC-DAD-ESI-QTOF-MS/MS. J Pharm Biomed Anal 94:23–29

    CAS  PubMed  Google Scholar 

  • Kwon-Chung KJ, Bennett JE, Wickes BL, Meyer W, Cuomo CA, Wollenburg KR et al (2017) The case for adopting the “species complex” nomenclature for the etiologic agents of Cryptococcosis. mSphere 2:e00357–16

  • Lee S-J, Lim K-T (2008) Glycoprotein of Zanthoxylum piperitum DC has a hepatoprotective effect via anti-oxidative character in vivo and in vitro. Toxicol In Vitro 22:376–385

    CAS  PubMed  Google Scholar 

  • Li P, Wu Z, Liu T, Wang Y (2016) Biodiversity, phylogeny, and antifungal functions of endophytic fungi associated with Zanthoxylum bungeanum. Int J Mol Sci 17:1541

    PubMed Central  Google Scholar 

  • Li S, Darwish O, Alkharouf NW, Musungu B, Matthews BF (2017) Analysis of the genome sequence of Phomopsis longicolla: a fungal pathogen causing Phomopsis seed decay in soybean. BMC Genomics 18:688

    PubMed  PubMed Central  Google Scholar 

  • Liu XZ, Song WL, Zhang K, Ye YC, Dai CC (2011) Effects of two kinds of endophytic fungi infection on water stress of seedlings of Chrysanthemum morifolium. Acta Hortic Sin 38:335–342

    CAS  Google Scholar 

  • Liu YH, Hu XP, Li W, Cao XY, Yang HR, Lin ST, Xu CB, Liu SX, Li CF (2016) Antimicrobial and antitumor activity and diversity of endophytic fungi from traditional Chinese medicinal plant Cephalotaxus hainanensis Li. Genet Mol Res 15

  • Luo ZP, Lin HY, Ding WB, He HL, Li YZ (2015) Phylogenetic diversity and antifungal activity of endophytic fungi associated with Tephrosia purpurea. Mycobiology 43:435–443

    PubMed  PubMed Central  Google Scholar 

  • Lyu ZZ, Liu JK, Qg Q, Xj Z (2018) Isolation of endophytic fungi from Zanthoxylum simulans and screening of its active strain. Zhongguo Zhong Yao Za Zhi 43:1434–1440

    PubMed  Google Scholar 

  • Meng JJ, He XL (2011) Effects of AM fungi on growth and nutritional contents of Salvia miltiorrhiza Bge. under drought stress. J Agric Univ Hebei 34:51–55

    CAS  Google Scholar 

  • Mishra VK, Singh G, Passari AK, Yadav MK, Gupta VK, Singh BP (2016) Distribution and antimicrobial potential of endophytic fungi associated with ethnomedicinal plant Melastoma malabathricum L. J Environ Biol 37:229–237

    CAS  PubMed  Google Scholar 

  • Muntanola-Cvetkovic M, Mihaljcevic M, Petrov M (1981) On the identity of the causative agent of a serious Phomopsis-Diaporthe disease in sunflower plants. Nova Hedwigia 34:417–435

    Google Scholar 

  • Nguyen PH, Zhao BT, Kim O, Lee JH, Choi JS, Min BS, Woo MH (2016) Anti-inflammatory terpenylated coumarins from the leaves of Zanthoxylum schinifolium with α-glucosidase inhibitory activity. J Nat Med 70:276–281

    CAS  PubMed  Google Scholar 

  • Nilsson RH, Larsson KH, Taylor AFS, Bengtsson-Palme J, Jeppesen TS, Schigel D et al (2019) The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res 47:D259–D264

    CAS  PubMed  Google Scholar 

  • Patil M, Patil R, Mohammad S, Maheshwari V (2017) Bioactivities of phenolics-rich fraction from Diaporthe arengae TATW2, an endophytic fungus from Terminalia arjuna (Roxb.). Biocatal Agr Biotech 10:396–402

    Google Scholar 

  • Phongpaichit S, Rungjindamai N, Rukachaisirikul V, Sakayaroj J (2006) Antimicrobial activity in cultures of endophytic fungi isolated from Garcinia species. FEMS Immunol Med Microbiol 48:367–372

    CAS  PubMed  Google Scholar 

  • Qi H, Wang WX, Dai JL, Zhu L (2015) In vitro anthelmintic activity of Zanthoxylum simulans essential oil against Haemonchus contortus. Vet Parasitol 211:223–227

    CAS  PubMed  Google Scholar 

  • Rios JL, Recio MC, Villar A (1988) Screening methods for natural products with antimicrobial activity: a review of the literature. J Ethnopharmacol 23:127–149

    CAS  PubMed  Google Scholar 

  • Santos JM, Vrandečić K, Cosić J, Duvnjak T, Phillips AJ (2011) Resolving the Diaporthe species occurring on soybean in Croatia. Persoonia 27:9–19

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh PD, Johnson JH, Aklonis CA, Bush K, Fisher SM, O’Sullivan J (1985) Two new inhibitors of phospholipase A2 produced by Penicillium chermesinum. Taxonomy, fermentation, isolation, structure determination and biological properties. J Antibiot 38:706–712

    CAS  Google Scholar 

  • Specian V, Sarragiotto MH, Pamphile J, Clemente E (2012) Chemical characterization of bioactive compounds from the endophytic fungus Diaporthe helianthi isolated from Luehea divaricata. Braz J Microbiol 43:1174–1182

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stierle A, Strobel G, Stierle D (1993) Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science 260:214–216

    CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vieira ML, Johann S, Hughes FM, Rosa CA, Rosa LH (2014) The diversity and antimicrobial activity of endophytic fungi associated with medicinal plant Baccharis trimera (Asteraceae) from the Brazilian savannah. Can J Microbiol 60:847–856

    CAS  PubMed  Google Scholar 

  • Wagenaar MM, Clardy J (2001) Dicerandrols, new antibiotic and cytotoxic dimers produced by the fungus Phomopsis longicolla isolated from an endangered mint. J Nat Prod 64:1006–1009

    CAS  PubMed  Google Scholar 

  • Wang C, Wan J, Mei Z, Yang X (2014) Acridone alkaloids with cytotoxic and antimalarial activities from Zanthoxylum simullans Hance. Pharmacogn Mag 10:73–76

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang GJ, Chen SM, Chen WC, Chang YM, Lee TH (2007) Selective inducible nitric oxide synthase suppression by new bracteanolides from Murdannia bracteata. J Ethnopharmacol 112:221–227

    CAS  PubMed  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, New York, pp 315–322

    Google Scholar 

  • Wu SJ, Chen IS (1993) lkaloids from Zanthoxylum simulans. Phytochemistry 34:1659–1661

    CAS  Google Scholar 

  • Yang HR, Hu XP, Jiang CJ, Qi J, Wu YC, Li W, Zeng YJ, Li CF, Liu SX (2015) Diversity and antimicrobial activity of endophytic fungi isolated from Cephalotaxus hainanensis Li, a well-known medicinal plant in China. Lett Appl Microbiol 61:484–490

    CAS  PubMed  Google Scholar 

  • Yang YP, Cheng MJ, Teng CM, Chang YL, Tsai IL, Chen IS (2002) Chemical and anti-platelet constituents from Formosan Zanthoxylum simulans. Phytochemistry 61:567–572

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Guei-Jane Wang, who performed the determination of antioxidant activity, and Hsi-Tsun Chen, who serves in Kinmen County Forestry Bureau and assisted with the identification of plant samples. We are also grateful to Ching-Chang Hung for providing images of the plant.

Funding

Financial support was received from the Kinmen County Fisheries Research Institute (grant number 106G019-1) by W.-C. Chi.

Author information

Authors and Affiliations

Authors

Contributions

WCC took charge of the experimental design. Collection of leaves and stems of Zanthoxylum simulans in Kinmen was carried out by WCC. WCC and CFC isolated and identified endophytic fungi. WCC and KJ interpreted the results, conducted phytochemical screening, and wrote and finalized the manuscript.

Corresponding author

Correspondence to Wei-Chiung Chi.

Ethics declarations

Conflicts of interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuo, J., Chang, CF. & Chi, WC. Isolation of endophytic fungi with antimicrobial activity from medicinal plant Zanthoxylum simulans Hance. Folia Microbiol 66, 385–397 (2021). https://doi.org/10.1007/s12223-021-00854-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-021-00854-4

Navigation