Skip to main content
Log in

A Novel Correction Method of Kubelka–Munk Model for Color Prediction of Pre-colored Fiber Blends

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In order to apply the single-constant Kubelka–Munk (KM) model to color prediction of fiber blends, a novel correction method is proposed in the paper. The single-constant KM model is based on the assumption that the ratio of absorption coefficients to scattering coefficients (K/S) of a mixture is linear to mass proportion of its components. However, when it comes to the media of pre-colored fiber blends, the linear assumption always fails, resulting in inaccurate color prediction with large color difference. To solve this problem, a novel correction method was proposed, which improved the linearity of K/S in the way of decreasing the linear deviation. Pre-colored cotton fibers were used to prepare samples to examine the proposed correction method. The average color difference values ΔEcmc (2:1) and ΔE00 of the single-constant KM model with proposed correction method are 1.37 and 1.17 respectively, which are remarkably better than those of the Kubelka–Munk model without correction (~ 8.41 and 6.35) and the Kubelka–Munk model with Saunderson correction (~ 8.63 and 6.55). The results indicate that, for the media of pre-colored fiber blends, the proposed correction method greatly improves the color prediction accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. X. Sun, Y. Xue, Y. Liu, G. Zhang, L. Liu, L. Wang, Text. Res. J. 93, 1358 (2023). https://doi.org/10.1177/00405175221132327

    Article  CAS  Google Scholar 

  2. E.I. Stearns, F. Noechel, Am. Dyestuff Rep. 33, 177 (1944)

    CAS  Google Scholar 

  3. L.F.C. Friele, J. Text. Inst. Proc. 43(8), 604 (1952). https://doi.org/10.1080/19447015208664079

    Article  Google Scholar 

  4. D.A. Burlone, Color. Res. Appl. 8, 114 (1983). https://doi.org/10.1002/col.5080080210

    Article  Google Scholar 

  5. D.A. Burlone, Color. Res. Appl. 9, 213 (1984). https://doi.org/10.1002/col.5080090406

    Article  Google Scholar 

  6. C. Hemingray, S. Westland, Color. Technol. 132, 297 (2016). https://doi.org/10.1111/cote.12220

    Article  CAS  Google Scholar 

  7. B. Philips-Invernizzi, D. Dupont, A.-M. Jolly-Desodt, C. Cazé, Color. Res. Appl. 27, 100 (2002). https://doi.org/10.1002/col.10028

    Article  Google Scholar 

  8. C.-A. Wei, X. Wan, J. Li, Dyes Pigm. 147, 544 (2017). https://doi.org/10.1016/j.dyepig.2017.08.012

    Article  CAS  Google Scholar 

  9. X. Sun, Y. Xue, Q. Xu, J. Shen, Z. Xu, Text. Res. J. 93, 206 (2023). https://doi.org/10.1177/00405175221115887

    Article  CAS  Google Scholar 

  10. B. Philips-Invernizzi, D. Dupont, C. Cazé, Color. Res. Appl. 27, 191 (2002). https://doi.org/10.1002/col.10048

    Article  Google Scholar 

  11. L. Yang, J. Bai, R. Zhang, Y. Ding, F. Ji, Y. Ma, J. Yu, Y. Zhamg, Text. Res. J. 89, 4007 (2019). https://doi.org/10.1177/0040517519826892

    Article  CAS  Google Scholar 

  12. R. Yang, K. Zhang, Z. Wang, Fibers Polym. 23, 1018 (2022). https://doi.org/10.1007/s12221-022-4230-0

    Article  Google Scholar 

  13. P. Kubelka, F. Munk, Z. Tech, Phys. 12, 593 (1931)

    Google Scholar 

  14. P. Kubelka, J. Opt. Soc. Am. 38, 448 (1948). https://doi.org/10.1364/josa.38.000448

    Article  CAS  PubMed  Google Scholar 

  15. R.D. Duncan, Proc. Phys. Soc. 52, 390 (1940). https://doi.org/10.1088/0959-5309/52/3/310

    Article  CAS  Google Scholar 

  16. H. Yang, S. Zhu, N. Pan, Text. Res. J. 80, 263 (2010). https://doi.org/10.1177/0040517508099914

    Article  CAS  Google Scholar 

  17. J. Li, D. Xie, M. Li, S. Liu, C.-A. Wei, Front. Neurosci. 16, 945454 (2022). https://doi.org/10.3389/fnins.2022.945454

    Article  PubMed  PubMed Central  Google Scholar 

  18. R. Furferi, L. Governi, Y. Volpe, By Workshops I (Springer, Genoa, 2015), pp.79–86

    Google Scholar 

  19. C.-A. Wei, X. Wan, J. Li, Cellulose 25, 2091 (2018). https://doi.org/10.1007/s10570-018-1669-7

    Article  Google Scholar 

  20. R. Yang, Y. Xu, C. Xie, H. Wang, Dyes Pigm. 165, 151 (2019). https://doi.org/10.1016/j.dyepig.2019.02.008

    Article  CAS  Google Scholar 

  21. R. Yang, C. He, B. Pan, Z. Wang, Text. Res. J. 92, 574 (2022). https://doi.org/10.1177/00405175211040871

    Article  CAS  Google Scholar 

  22. G. Zhang, R. Pan, J. Zhou, L. Wang, W. Gao, Text. Res. J. 92, 2569 (2022). https://doi.org/10.1177/0040517521989788

    Article  CAS  Google Scholar 

  23. X. Sun, Y. Xue, Y. Liu, L. Wang, L. Liu, Text. Res. J. 93, 2694 (2023). https://doi.org/10.1177/00405175221146290

    Article  CAS  Google Scholar 

  24. J. Shen, X. Zhou, H. Ma, W. Chen, Text. Res. J. 87, 296 (2016). https://doi.org/10.1177/0040517516629145

    Article  CAS  Google Scholar 

  25. Y. Zhou, Z. Chen, Y. Li, B. Ji, G. Wang, G. Liu, Nat. Sci. (2021). https://doi.org/10.19886/j.cnki.dhdz.2019.0373

    Article  Google Scholar 

  26. J. Saunderson, J. Opt. Soc. Am. 32, 727 (1942). https://doi.org/10.1364/josa.32.000727

    Article  Google Scholar 

  27. D.B. Judd, J. Res. Natl. Bur. Stand. 29, 329 (1942)

    Article  Google Scholar 

  28. S. Mehrotra, SIAM J. Optimiz. 2(4), 575 (1992). https://doi.org/10.1137/0802028

    Article  Google Scholar 

  29. J.R. Aspland, P. Shanbhag, AATCC Rev. 4(6), 26 (2004)

    CAS  Google Scholar 

  30. M.R. Luo, G. Cui, B. Rigg, Color. Res. Appl. 26, 340 (2001). https://doi.org/10.1002/col.1049

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Guangdong Esquel Textile Co. LTD for providing materials.

Funding

This work was supported by Natural Science Foundation of Henan (No. 232300421384); Henan Provincial Science and Technology Research Project (No. 232102210177; No. 212102310256; No. 222102210267; No. 202102210155); Startup Foundation for Doctors of Henan University of Animal Husbandry and Economy (No. 2020HNUAHEDF022).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chun‘ao Wei or Junfeng Li.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Ethical Approval and Consent to Participate

All authors declare informed consent.

Consent for Publication

All authors consent to the publication of this manuscript.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, C., Xie, D., Wan, X. et al. A Novel Correction Method of Kubelka–Munk Model for Color Prediction of Pre-colored Fiber Blends. Fibers Polym (2024). https://doi.org/10.1007/s12221-024-00559-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12221-024-00559-8

Keywords

Navigation