Skip to main content
Log in

A Controllable and Effective Method to Prepare Nano-LnMOFs Film on Silk Fabric and Extend the Temperature-Sensing Range

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Preparation stable and continuous lanthanide metal–organic frameworks (Ln-MOFs) crystalline film coated on flexible substrate is a challenge for application. Herein a kind of novel nanoscale Eu-MOFs film on silk fabric for temperature sensing was successfully prepared. The silk fabric was coated with titanium dioxide (TiO2) via different atomic layer deposition (ALD) cycles, and then the Eu-MOFs can grow to nanoscale continuous film on the substrate. The composite was characterized by SEM, TEM, XPS, TG and PL. Fluorescence detection of temperature was also studied, and in a wide temperature range (77 K to 423 K), the fluorescence detection was sensitive and fitted to linear equation. In addition, the functional silk fabric exhibited different fluorescence detection behavior to temperature at different pH preparation conditions. At neutral preparation conditions, the fluorescence color of the functional silk fabric was dark yellow. The silk fabric exhibited rapid response in detection of temperature. At acidic preparation conditions, the fluorescence color was bright yellow, but it did not have detection effect. At alkaline preparation conditions, blue purple fluorescence was presented, and the temperature detection was also sensitive and fast. It is an effective method to obtain Ln-MOFs flexible film materials, and apply in the field of intelligent detection and wearing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data are available in the manuscript, and source data are available from the corresponding author upon reasonable request.

References

  1. J. Rocha, L.D. Carlos, F.A.A. Paz, D. Ananias, Chem. Soc. Rev. 40, 926 (2011)

    Article  CAS  PubMed  Google Scholar 

  2. X.D. Wang, O.S. Wolfbeis, R.J. Meier, Chem. Soc. Rev. 42, 7834 (2013)

    Article  CAS  PubMed  Google Scholar 

  3. L. Zhang, S. Yuan, L. Feng, B. Guo, J. Qin, B. Xu, C. Lollar, D. Sun, H. Zhou, Angew. Chem. Int. Ed. 57, 5095 (2018)

    Article  CAS  Google Scholar 

  4. Y. Cui, B. Chen, G. Qian, Coord. Chem. Rev. 273–274, 76 (2014)

    Article  Google Scholar 

  5. G.Y. Wang, C. Song, D.M. Kong, W.J. Ruan, Z. Chang, Y. Li, J. Mater. Chem A. 2, 2213 (2014)

    Article  CAS  Google Scholar 

  6. L.V. Meyer, F. Schonfeld, K. Muller-Buschbaum, Chem. Commun. 50, 8093 (2014)

    Article  CAS  Google Scholar 

  7. J. Zhou, H. Li, H. Zhang, H. Li, W. Shi, P. Cheng, Adv. Mater. 27, 7072 (2015)

    Article  CAS  PubMed  Google Scholar 

  8. Z. Hu, B.J. Deibert, J. Li, Chem. Soc. Rev. 43, 5815 (2014)

    Article  CAS  PubMed  Google Scholar 

  9. Y. Li, S. Zhang, D. Song, Angew. Chem. Int. Ed. 52, 710 (2013)

    Article  CAS  Google Scholar 

  10. H.S. Jung, P. Verwilst, W.Y. Kim, J.S. Kim, Chem. Soc. Rev. 45, 1242 (2016)

    Article  CAS  PubMed  Google Scholar 

  11. Y. Zhang, Y. Zhao, A. Zhou, Q. Qu, X. Zhang, B. Song, K. Liu, R. Xiong, C. Huang, Spectrochim. Acta. A. 261, 120014 (2021)

    Article  CAS  Google Scholar 

  12. Y. Cui, R. Song, J. Yu, M. Liu, Z. Wang, C. Wu, Y. Yang, Z. Wang, B. Chen, G. Qian, Adv. Mater. 27, 1420 (2015)

    Article  CAS  PubMed  Google Scholar 

  13. X. Lian, D. Zhao, Y. Cui, Y. Yang, G. Qian, Chem. Commun. 51, 17676 (2015)

    Article  CAS  Google Scholar 

  14. Y. Zhang, D. Fang, R. Liu, S. Zhao, X. Xiao, C. Wang, Y. Cao, W. Xu, Dyes Pigm. 130, 129 (2016)

    Article  CAS  Google Scholar 

  15. B.V. Harbuzaru, A. Corma, F. Rey, J.L. Jorda, D. Ananias, L.D. Carlos, J. Rocha, Angew. Chem. Int. Ed. 48, 6476 (2009)

    Article  CAS  Google Scholar 

  16. B. Chen, Y. Yang, F. Zapata, G. Lin, G. Qian, E.B. Lobkovsky, Adv. Mater. 19, 1693 (2007)

    Article  CAS  Google Scholar 

  17. Y. Xiao, Y. Cui, Q. Zheng, S. Xiang, G. Qian, B. Chen, Chem. Commun. 46, 5503 (2010)

    Article  CAS  Google Scholar 

  18. Y.J. Tong, L.D. Yu, J. Zheng, G. Liu, G. Ouyang, Anal. Chem. 92(23), 15550 (2020)

    Article  CAS  PubMed  Google Scholar 

  19. H. Guo, Y. Zhu, S. Qiu, J.A. Lercher, H. Zhang, Adv. Mater. 22, 4190 (2010)

    Article  CAS  PubMed  Google Scholar 

  20. X. Xiao, L. Ren, S. Wang, Q. Zhang, Y. Zhang, R. Liu, W. Xu, Fiber Polym. 21, 2003 (2020)

    Article  CAS  Google Scholar 

  21. T. Li, L. Liu, M. Gao, Z. Han, Chem. Commun. 55, 4941 (2019)

    Article  CAS  Google Scholar 

  22. J. Cui, T. Lu, F. Li, Y. Wang, J. Lei, W. Ma, Y. Zou, C. Huang, J. Colloid Interf. Sci. 582, 506 (2021)

    Article  CAS  Google Scholar 

  23. Y. Deng, T. Lu, X. Zhang, Z. Zeng, R. Tao, Q. Qu, Y. Zhang, M. Zhu, R. Xiong, C. Huang, J. Membr. Sci. 660, 120857 (2022)

    Article  CAS  Google Scholar 

  24. J. Ju, N. Hu, D.M. Cairns, H. Liu, P.T. Brian, PNAS 117, 15482 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. J. Li, X. Yuan, Y. Wu, X. Ma, F. Li, B. Zhang, Y. Wang, Z. Lei, Z. Zhang, Chem. Eng. J. 350, 637 (2018)

    Article  CAS  Google Scholar 

  26. D. Zhang, Q. Chen, W. Zhang, H. Liu, J. Wan, Y. Qian, B. Li, S. Tang, Y. Liu, S. Chen, R. Liu, Angew. Chem. Int. Ed. 132, 9673 (2020)

    Article  Google Scholar 

  27. M. Jian, Y. Zhang, Z. Liu, Chinese. J. Polym. Sci. 38, 459 (2020)

    CAS  Google Scholar 

  28. T. Jia, Y. Wang, Y. Dou, Y. Li, M.J. de Mndrade, R. Wang, S. Fang, J. Li, Y. Zhou, R. Qiao, Z. Liu, Y. Cheng, Y. Su, M. Minary-Jolandan, R.H. Baughman, D. Qian, Z. Liu, Adv. Funct. Mater. 29, 1808241 (2019)

    Article  Google Scholar 

  29. B. Tang, C. Liu, H. Bai, B. He, X. He, J. Zhang, C. Chen, Y. Qiu, R. Hu, F. Zhao, Y. Zhang, W. He, J.H.C. Chau, S. Chen, J.W.Y. Lam, Angew. Chem. Int. Ed. 60(22), 12424 (2021)

    Article  Google Scholar 

  30. S. Zhang, W. Shi, P. Cheng, M.J. Zaworotko, J. Am. Chem. Soc. 137, 12203 (2015)

    Article  CAS  PubMed  Google Scholar 

  31. A.R. Abbasi, M. Yousefshahi, A. Azadbakht, Colloids Surf. A 498, 58 (2016)

    Article  CAS  Google Scholar 

  32. X. Ma, Y. Chai, P. Li, B. Wang, Acc. Chem. Res. 52, 1461 (2019)

    Article  CAS  PubMed  Google Scholar 

  33. S.M. George, Chem. Rev. 110, 111 (2010)

    Article  CAS  PubMed  Google Scholar 

  34. C. Detavernier, J. Dendooven, S.P. Sree, K.F. Ludwig, J.A. Martens, Chem. Soc. Rev. 40, 5242 (2011)

    Article  CAS  PubMed  Google Scholar 

  35. J. Zhao, D.T. Lee, R.W. Yaga, M.G. Hall, H.F. Barton, I.R. Woodward, C.J. Oldham, H.J. Walls, G.W. Peterson, G.N. Parsons, Angew. Chem. Int. Ed. 55, 13224 (2016)

    Article  CAS  Google Scholar 

  36. P.C. Lemaire, J. Zhao, P.S. Williams, H.J. Walls, S.D. Shepherd, M.D. Losego, G.W. Peterson, G.N. Parsons, A.C.S. Appl, Mater. Interfaces. 8, 9514 (2016)

    Article  CAS  Google Scholar 

  37. Y. Cui, W. Zou, R. Song, J. Yu, W. Zhang, Y. Yang, G. Qian, Chem. Commun. 50, 719 (2014)

    Article  CAS  Google Scholar 

  38. G.E. Khalil, K. Lau, G.D. Phelan, B. Carlson, M. Gouterman, J.B. Callis, L.R. Dalton, Rev. Sci. Instrum. 75, 192 (2004)

    Article  CAS  Google Scholar 

  39. B.B.J. Basu, N. Vasantharajan, J. Lumin. 128, 1701 (2008)

    Article  CAS  Google Scholar 

  40. X.D. Wang, X.H. Song, C.Y. He, C.J. Yang, G.N. Chen, X. Chen, Anal. Chem. 83, 2434 (2011)

    Article  CAS  PubMed  Google Scholar 

  41. S. Katagiri, Y. Hasegawa, Y. Wada, S. Yanagida, Chem. Lett. 33, 1438 (2004)

    Article  CAS  Google Scholar 

  42. M. Mitsuishi, S. Kikuchi, T. Miyashita, Y. Amao, J. Mater. Chem. 13, 2875 (2003)

    Article  CAS  Google Scholar 

  43. K. Miyata, Y. Konno, T. Nakanishi, A. Kobayashi, M. Kato, K. Fushimi, Y. Hasegawa, Angew. Chem. Int. Ed. 52, 6413 (2013)

    Article  CAS  Google Scholar 

  44. A.M. Kaczmarek, Y. Liu, M.K. Kaczmarek, H. Liu, F. Artizzu, L.D. Carlos, P.V.D. Voort, Angew. Chem. Int. Ed. 59, 2124 (2019)

    Article  Google Scholar 

  45. W. Zhang, X. Ji, B. Peng, S. Che, F. Ge, W. Liu, M.A. Hashimi, C. Wang, L. Fang, Adv. Funct. Mater. 30, 1906463 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Natural Science Foundation of China (No. 52103064), Natural Science Foundation of Hebei Province (No. E2022408001), Science and Technology Project of Hebei Education Department (No. ZD2021092), Fundamental Research Funds for the Universities in Hebei Province (No. JYT202101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruina Liu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, X., Ren, L., Liu, R. et al. A Controllable and Effective Method to Prepare Nano-LnMOFs Film on Silk Fabric and Extend the Temperature-Sensing Range. Fibers Polym 25, 1253–1263 (2024). https://doi.org/10.1007/s12221-024-00514-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-024-00514-7

Keywords

Navigation