Skip to main content
Log in

A Method to Regulate the Shape of Yarn Balloon and Its Effect on the Tension and Quality of Ring Spun Yarn

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Yarn tension, predominately determined by the dynamic motion of yarn balloon, is a key factor for spinning speed and yarn qualities, which is attracting an increasing amount of concern in advance spinning field. A novel device called a special-shaped tube (SST) has been introduced in this work, to reduce yarn tension. The SST is installed between yarn guide and traveler to regulate the dynamic balloon, ensuring consecutive yarn spinning with high spindle speed. Theoretical modeling was developed to explain that the SST can lower the yarn tension and reduce the fluctuation of yarn tension by controlling the shape of yarn balloon. Experimental results have confirmed this theoretical analysis. Meanwhile, they also reveal that the SST can be deployed to produce yarns with higher strength than yarns produced with existing balloon control ring (BCR) device. Both yarn hairiness and irregularity are similar for these two types of yarns. This spinning device also helps to isolate yarns from the turbulent flow from both sides, avoiding any negative effect on yarn formation. All superiorities indicate that the SST has the potential to replace balloon separator and BCR in industrial spinning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. S. Shang, J. Yang, C. Yu, Text. Res. J. 89, 1113 (2019). https://doi.org/10.1177/0040517518758008

    Article  CAS  Google Scholar 

  2. Z. Pei, Y. Zhang, G. Chen, Text. Res. J. 89, 113 (2019). https://doi.org/10.1177/0040517517736477

    Article  CAS  Google Scholar 

  3. H. Lin, Y. Zeng, J. Wang, Text. Res. J. 86, 115 (2016). https://doi.org/10.1177/0040517515586162

    Article  CAS  Google Scholar 

  4. N.T. Akankwasa, H. Lin, Y. Zhang, J. Wang, Text. Res. J. 88, 237 (2018). https://doi.org/10.1177/0040517516677230

    Article  CAS  Google Scholar 

  5. A. Merati, Friction spinning, in Advances in yarn spinning technology. (Elsevier, 2010), pp.274–314

    Chapter  Google Scholar 

  6. N. Bakhsh, M.Q. Khan, A. Ahmad, T. Hassan, Recent advancements in cotton spinning, in Cotton Science and Processing Technology. (Springer, 2020), pp.143–164

    Chapter  Google Scholar 

  7. X. Li, H. Liu, P. Lv, L. Liu, J. Text. Inst. 112, 406 (2021). https://doi.org/10.1080/00405000.2020.1761682

    Article  Google Scholar 

  8. Y. Song, Comparison between Conventional Ring Spinning and Compact Spinning, in Graduate Faculty 2016, North Carolina State University: Raleigh, North Carolina. p. 1–138.

  9. X. Liu, H. Zhang, X. Su, Int J Cloth Sci Tech (2016). https://doi.org/10.1108/IJCST-09-2015-0104

    Article  Google Scholar 

  10. M.I. Islam, A.J. Uddin, Heliyon 8, 1 (2022). https://doi.org/10.1016/j.heliyon.2022.e09562

    Article  Google Scholar 

  11. M.Y. Saty, N.T. Akankwasa, J. Wang, Text. Res. J. 91, 1389 (2021). https://doi.org/10.1177/0040517520982586

    Article  CAS  Google Scholar 

  12. H.M. Mofarah, S.S. Najar, S.M. Etrati, Indian J Fibre Text 44, 431 (2019)

    CAS  Google Scholar 

  13. Z. Xia, H. Liu, J. Huang, S. Gu, W. Xu, Text. Res. J. 85, 128 (2015). https://doi.org/10.1177/0040517514542863

    Article  CAS  Google Scholar 

  14. M. Guo, F. Sun, W. Gao, Text. Res. J. 89, 2741 (2019). https://doi.org/10.1177/0040517518801149

    Article  CAS  Google Scholar 

  15. Z. Xia, C. Wang, C. Fu, J. Wei, W. Xu, Text. Res. J. 89, 3927 (2019). https://doi.org/10.1177/0040517518824850

    Article  CAS  Google Scholar 

  16. S. Liu, L. Ma, X. Ding, K.C. Wong, X.-M. Tao, Text. Res. J. 92, 284 (2022). https://doi.org/10.1177/00405175211035130

    Article  CAS  Google Scholar 

  17. R. Yin, Text. Res. J. 91, 278 (2021). https://doi.org/10.1177/0040517520940807

    Article  CAS  Google Scholar 

  18. H. Yu et al., J Nat Fibers 20, 1 (2023). https://doi.org/10.1080/15440478.2023.2172640

    Article  CAS  Google Scholar 

  19. M.K.R. Khan, H.A. Begum, M.R. Sheikh, J. Text. Sci. Technol. 6, 19 (2019). https://doi.org/10.4236/jtst.2020.61003

    Article  Google Scholar 

  20. R. Shao, L. Cheng, W. Xue, Y. Yu, N. Pan, Text. Res. J. 91, 289 (2021). https://doi.org/10.1177/0040517520938464

    Article  CAS  Google Scholar 

  21. H. Yu, J. Zhang, S. He, P. Feng, C. Yang, Text. Res. J. (2023). https://doi.org/10.1177/00405175221148259

    Article  Google Scholar 

  22. M. Hossain, C. Telke, A. Abdkader, C. Cherif, M. Beitelschmidt, Text. Res. J. 86, 1180 (2016). https://doi.org/10.1177/0040517515606355

    Article  CAS  Google Scholar 

  23. M. Hossain et al., Fibres Text. East Eur. 5, 32 (2018). https://doi.org/10.5604/01.3001.0012.2528

    Article  Google Scholar 

  24. Y. Shu, Y. Tang, Text. Res. J. 93, 1057 (2023). https://doi.org/10.1177/00405175221130522

    Article  CAS  Google Scholar 

  25. M. Lenz, M. Hossain, M. Beitelschmidt, C. Cherif, A. Abdkader, Appl. Math. Model. 88, 518 (2020). https://doi.org/10.1016/j.apm.2020.06.025

    Article  MathSciNet  Google Scholar 

  26. P. Cui, Y. Zhang, Y. Xue, J. Fiber Sci. Technol. 76, 190 (2020). https://doi.org/10.2115/fiberst.2020-0023

    Article  Google Scholar 

  27. R. Yin, H. Gu, Tex. Res. J. 81, 22 (2011). https://doi.org/10.1177/0040517510376272

    Article  CAS  Google Scholar 

  28. X. Li, Z. Bu, W. Chang, P. Lv, L. Liu, J. Text. Inst. 111, 484 (2020). https://doi.org/10.1080/00405000.2019.1644107

    Article  Google Scholar 

  29. Z. Xia, Y. Feng, Q. Guo, W. Ye, W. Xu, Text. Res. J. 86, 2032 (2016). https://doi.org/10.1177/0040517515619355

    Article  CAS  Google Scholar 

  30. H. Yu, K. Liu, C. Jun, C. Fu, Z. Xia, W. Xu, Text. Res. J. 88, 1812 (2018). https://doi.org/10.1177/0040517517712094

    Article  CAS  Google Scholar 

  31. K. Liu, Z. Xia, W. Xu, Y. Hao, Q. Xu, W. Jin, J. Ni, Text. Res. J. 88, 800 (2018). https://doi.org/10.1177/0040517517716903

    Article  CAS  Google Scholar 

  32. R. Rengasamy, Fundamental principles of ring spinning of yarns, in Advances in yarn spinning technology. (Elsevier, 2010), pp.42–78

    Chapter  Google Scholar 

  33. Y. Liu, Z. Feng, F. Lv, G. Wang, Text. Res. J. 93, 2175 (2023). https://doi.org/10.1177/00405175221142250

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge Junlong Ni, Shengya Hu, Wei Ye, Chuang Ding and Renfa Jin for their great assistance with cotton sampling for this work. The authors are also grateful to the Spinning group in the State Key Laboratory of New Textile Materials and Advanced Processing Technologies at Wuhan Textile University (especially the late Weiqi Guo) for technical support.

Funding

This work was supported in part by the National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Project No. 223002006, in part by State State Key Laboratory of New Textile Materials and Advanced Processing Technologies under Grant No. FZ20230023, in part by Hubei Provincial Engineering Research Center for Intelligent Textile and Fashion (Wuhan Textile University) under Grant No. 2023HBITF03 and in part by the Fund of Hubei Key laboratory of Digital Textile Equipment under Grant No. DTL2023023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liquan Jiang.

Ethics declarations

Conflict of Interest

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 19 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, H., Xu, G., Yang, S. et al. A Method to Regulate the Shape of Yarn Balloon and Its Effect on the Tension and Quality of Ring Spun Yarn. Fibers Polym 25, 1149–1162 (2024). https://doi.org/10.1007/s12221-024-00498-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-024-00498-4

Keywords

Navigation