Skip to main content
Log in

Hydrophobic, Self-Cleaning and Ultraviolet Protective Fibers achieved by Graphene Oxide Nanosheets Functionalized via Poly(Glycidyl Methacrylate) Nanoparticles

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

We developed a highly hydrophobic, UV-protective, and self-cleaning cotton fabric by incorporating graphene oxide (GO) nanosheets and poly(glycidyl methacrylate) nanoparticles (PGMA NPs). The GO was synthesized using a modified Hummer's method, while the PGMA NPs were synthesized via dispersion polymerization. Crosslinking agents with isocyanate groups were employed to enhance the adhesion between the GO and cotton textiles. The hydroxyl groups on GO interacted with the glycidyl-functionalized PGMA NPs, further improving the fabric's properties. The cotton fabric's nano pattern increased its structural hydrophobicity and prevented air from reaching the material surface. The application of octadecyl thiol (ODT) further enhanced the fabric's hydrophobicity and reduced surface energy. To characterize the nanomaterials and coated textiles, various techniques such as X-ray diffraction, UV–visible spectroscopy, Fourier-transform infrared spectroscopy, scanning and transmission electron microscopy, energy-dispersive spectroscopy, and thermogravimetric analysis were employed to analyze their chemical composition, functionalization, surface area, and morphology. The size of the GO nanosheets was approximately 500 nm, while the PGMA NPs had a size of around 60 nm. The coated fabric samples demonstrated a hydrophobicity angle of approximately 140° ± 1, indicating high water repellency, self-cleaning effect and exhibited outstanding UV protection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The experimental datasets obtained from this research work and then the analyzed results during the current study are available from the corresponding author on reasonable request.

References

  1. S. Li, J. Huang, Z. Chen, G. Chen, Y. Lai, J. Mater. Chem. A. 5, 31–55 (2017). https://doi.org/10.1039/c6ta07984a

    Article  CAS  Google Scholar 

  2. Y. Ye, Z. Kang, F. Wang, Y. Long, T. Guo, D. Chen, J. Kong, L. Xu, Appl. Surf. Sci. 610, 155362 (2023). https://doi.org/10.1016/j.apsusc.2022.155362

    Article  CAS  Google Scholar 

  3. A. Mangababu, R. Sai Prasad Goud, C. Byram, J. Rathod, D. Banerjee, V. Rao Soma, S.V.S. Nageswara Rao, Applied Surface Science. 589, 152802, (2022). https://doi.org/10.1016/j.apsusc.2022.152802.

  4. Z. Guo, F. Zhou, J. Hao, W. Liu, J. Am. Chem. Soc. 127, 15670–15671 (2005). https://doi.org/10.1021/ja0547836

    Article  PubMed  CAS  Google Scholar 

  5. H. Liu, Y. Yin, J. Zhou, H. Yang, L. Guo, F. Peng, H. Qi, Ind. Crops Prod. 175, 114238 (2022). https://doi.org/10.1016/j.indcrop.2021.114238

    Article  CAS  Google Scholar 

  6. W. Wu, Y. Zhang, S. Miao, Y. Wu, X. Gong, N. Ahmad, S. Rasheed, K. Ahmed, S.G. Musharraf, M. Najam-ul-Haq, D. Hussain, Sep. Purif. Technol. 306, 122626 (2023). https://doi.org/10.1021/acs.langmuir.3c02269

    Article  CAS  Google Scholar 

  7. M. Dai, Y. Zhai, Y. Zhang, Chem. Eng. J. 421, 127749 (2021). https://doi.org/10.1016/j.cej.2020.127749

    Article  CAS  Google Scholar 

  8. E. Pakdel, J. Sharp, S. Kashi, W. Bai, M.P. Gashti, X. Wang, ACS Appl. Mater. Interfaces. 15, 34031–34043 (2023). https://doi.org/10.1021/acsami.3c04598

    Article  PubMed  CAS  Google Scholar 

  9. M. Verma, N. Gahlot, S.S.J. Singh, N.M. Rose, Carbohyd. Polym. 257, 117612 (2021). https://doi.org/10.1016/j.carbpol.2020.117612

    Article  CAS  Google Scholar 

  10. Q. Xu, X. Wang, Y. Zhang, Int. J. Biol. Macromol. 242, 124731 (2023). https://doi.org/10.1016/j.ijbiomac.2023.124731

    Article  PubMed  CAS  Google Scholar 

  11. J. Chen, L. Yuan, C. Shi, C. Wu, Z. Long, H. Qiao, K. Wang, Q.H. Fan, ACS Appl. Mater. Interfaces. 13, 18142–18151 (2021). https://doi.org/10.1021/acsami.1c03539

    Article  PubMed  CAS  Google Scholar 

  12. M. Yang, W. Liu, C. Jiang, C. Liu, S. He, Y. Xie, Z. Wang, J. Mater. Sci. 54, 2079–2092 (2019). https://doi.org/10.1007/s10853-018-3001-1

    Article  CAS  Google Scholar 

  13. N. Pan, Y. Xue, Z. Xu, Z. Long, Z. Li, Y. Wang, X. Gu, Int. J. Biol. Macromol. 245, 125577 (2023). https://doi.org/10.1016/j.ijbiomac.2023.125577

    Article  PubMed  CAS  Google Scholar 

  14. B. Mehravani, A.I. Ribeiro, A. Zille, 11, (2021). https://doi.org/10.3390/nano11051067.

  15. S. Deng, F. Wang, M. Wang, N. Wu, H. Cui, Y. Wu, I International Journal of Biological Macromolecules. 253, 127022 (2023). https://doi.org/10.1016/j.ijbiomac.2023.127022

    Article  PubMed  CAS  Google Scholar 

  16. M.H. Abu Elella, E.S. Goda, K.R. Yoon, S.E. Hong, M.S. Morsy, R.A. Sadak, H. Gamal, Composites Communications. 24, 100614, (2021). https://doi.org/10.1016/j.coco.2020.100614.

  17. S. Saraf, C. Kaur, Pharmacogn. Rev. 4, 1–11 (2010). https://doi.org/10.4103/0973-7847.65319

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. H. Zhao, M. Tian, Y. Hao, L. Qu, S. Zhu, S. Chen, J. Mater. Sci. 53, 9504–9520 (2018). https://doi.org/10.1007/s10853-018-2230-7

    Article  CAS  Google Scholar 

  19. J.Y. Huang, S.H. Li, M.Z. Ge, L.N. Wang, T.L. Xing, G.Q. Chen, X.F. Liu, S.S. Al-Deyab, K.Q. Zhang, T. Chen, Y.K. Lai, Journal of Materials Chemistry A. 3, 2825–2832 (2015). https://doi.org/10.1039/c4ta05332j

    Article  CAS  Google Scholar 

  20. M. Tian, X. Hu, L. Qu, M. Du, S. Zhu, Y. Sun, G. Han, Appl. Surf. Sci. 377, 141–148 (2016). https://doi.org/10.1016/j.apsusc.2016.03.183

    Article  CAS  Google Scholar 

  21. T. Li, L. Zou, K. Cheng, X. Liu, H. Shi, Q. Yang, B. Chang, X. Shi, J. Ma, C. Liu, C. Shen, Journal of Applied Polymer Science. 139, (2022). https://doi.org/10.1002/app.52004.

  22. S. Kumar, H. Arumugham, D. Roy, D. Kannaiyan, Polym. Adv. Technol. 33, 427–439 (2022). https://doi.org/10.1002/pat.5527

    Article  CAS  Google Scholar 

  23. S. Bhattacharjee, C.R. Macintyre, P. Bahl, U. Kumar, X. Wen, K.F. Aguey-Zinsou, A.A. Chughtai, R. Joshi, Advanced Materials. Interfaces 7, 1–13 (2020). https://doi.org/10.1002/admi.202000814

    Article  CAS  Google Scholar 

  24. G. Wang, B. Wang, J. Park, J. Yang, X. Shen, J. Yao, Carbon 47, 68–72 (2009). https://doi.org/10.1016/j.carbon.2008.09.002

    Article  CAS  Google Scholar 

  25. Z. Xu, N. Pan, Y. Xue, T. Jiang, Y. Wang, Int. J. Biol. Macromol. 222, 1192–1200 (2022). https://doi.org/10.1016/j.ijbiomac.2022.09.254

    Article  PubMed  CAS  Google Scholar 

  26. V. Babaahmadi, M. Montazer, Colloids Surf., A 506, 507–513 (2016). https://doi.org/10.1016/j.colsurfa.2016.07.025

    Article  CAS  Google Scholar 

  27. L. Karimi, M.E. Yazdanshenas, R. Khajavi, A. Rashidi, M. Mirjalili, J. Text. Inst. 107, 1122–1134 (2016). https://doi.org/10.1080/00405000.2015.1093311

    Article  CAS  Google Scholar 

  28. J. Cao, C. Wang, Appl. Surf. Sci. 405, 380–388 (2017). https://doi.org/10.1016/j.apsusc.2017.02.017

    Article  CAS  Google Scholar 

  29. A. Ambrosi, C.K. Chua, B. Khezri, Z. Sofer, R.D. Webster, M. Pumera, Proc. Natl. Acad. Sci. U.S.A. 109, 12899–12904 (2012). https://doi.org/10.1073/pnas.1205388109

    Article  PubMed  PubMed Central  Google Scholar 

  30. A.H. Lima, J.P. Mendonça, M. Duarte, F. Stavale, C. Legnani, G.S.G. De Carvalho, I.O. Maciel, F. Sato, B. Fragneaud, W.G. Quirino, Org. Electron. 49, 165–173 (2017). https://doi.org/10.1016/j.orgel.2017.05.054

    Article  CAS  Google Scholar 

  31. H. Jiang, J. Chen, Y. Shi, P. Chen, X. Tang, W. Jiang, Z. Zou, G. Wu, Appl. Surf. Sci. 586, 152739 (2022). https://doi.org/10.1016/j.apsusc.2022.152739

    Article  CAS  Google Scholar 

  32. D. Wang, J. Ma, J. Zhang, T.J. Strathmann, (2022). https://doi.org/10.1021/acs.est.2c08141.

  33. S. Aznar-Cervantes, J.G. Martínez, A. Bernabeu-Esclapez, A.A. Lozano-Perez, L. Meseguer-Olmo, T.F. Otero, J.L. Cenis, Bioelectrochemistry 108, 36–45 (2016). https://doi.org/10.1016/j.bioelechem.2015.12.003

    Article  PubMed  CAS  Google Scholar 

  34. Y. Chen, M. Yuan, Y. Zhang, X. Wang, F. Ke, H. Wang, J. Alloy. Compd. 931, 167585 (2023). https://doi.org/10.1016/j.jallcom.2022.167585

    Article  CAS  Google Scholar 

  35. A.P. Rananavare, J. Lee, Prog. Org. Coat. 170, 107006 (2022). https://doi.org/10.1016/j.porgcoat.2022.107006

    Article  CAS  Google Scholar 

  36. N.D. Tissera, R.N. Wijesena, J.R. Perera, K.M.N. De Silva, G.A.J. Amaratunge, Appl. Surf. Sci. 324, 455–463 (2015). https://doi.org/10.1016/j.apsusc.2014.10.148

    Article  CAS  Google Scholar 

  37. AS/NZS 4399, Sun protective clothing - Evaluation and classification, Standards Australia and Standards New Zealand. (2017).

Download references

Acknowledgements

This study was supported by Yeungnam University Research Grant 2023, Republic of Korea.

Funding

Yeungnam University,Yeungnam University Research Grant 2023,Jaewoong Lee

Author information

Authors and Affiliations

Authors

Contributions

APR: conceptualization, methodology, investigation, formal analysis, data curation, validation, and original draft preparation. JL: supervision, investigation, validation, resources, project administration, funding acquisition, review, and editing.

Corresponding author

Correspondence to Jaewoong Lee.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rananavare, A.P., Lee, J. Hydrophobic, Self-Cleaning and Ultraviolet Protective Fibers achieved by Graphene Oxide Nanosheets Functionalized via Poly(Glycidyl Methacrylate) Nanoparticles. Fibers Polym 25, 155–167 (2024). https://doi.org/10.1007/s12221-023-00419-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-023-00419-x

Keywords

Navigation