Skip to main content
Log in

Crashworthiness of Hybrid Pipes with Triggering Mechanism Under Quasi-static Axial Compression

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

This article experimentally examines the crashing performance and failure mechanisms of jute fiber (J)-reinforced epoxy/aluminum (Al) hybrid pipes with circular cutout. Wet wrapping by hand lay-up was used to manufacture the designed hybrid pipes, and they were tested under quasi-static axial loads. As crash indicators, hybrid pipes' initial peak load (\(F_{{{\text{ip}}}}\)), total absorbed energy (AE), mean crash load (\(F_{{\text{m}}}\)), specific energy absorption (SEA), and crash force efficiency (CFE) were evaluated. On these indicators, the effect of the number J-plies (P) and circular cutout parameters, i.e., diameter (D) and number (N) of holes, was evaluated. To make statistical predictions about the crash indicators, mathematical regression equations were used. Furthermore, the variance of analysis (ANOVA) was also adapted to determine the percent contribution of each parameter to crash indicators. The experimental outcomes revealed a significant relationship between the studied parameters and the crashing performance as well as the failure mechanisms. Results showed that D is the maximum impelling parameter on the values of \(F_{{{\text{ip}}}}\) and AE with contribution percents of 50.73 and 62.18%, respectively, followed by P with contribution percents of 37.76 and 27.91%, respectively. While P is the highest influencing parameter on the values of \(F_{{\text{m}}}\), SEA, and CFE with contribution percents, respectively of 59.87, 45.77, and 61.98%, followed by D for \(F_{{\text{m}}}\) and SEA with contribution percents of 34.66 and 34.83% but N for CFE with a percent of 27.05%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. C.W. Isaac, Int. J. Protect. Struct. 11, 41 (2019)

    Google Scholar 

  2. Z. Zhang, W. Sun, Y. Zhao, S. Hou, Compos. Pt B: Eng. 143, 86 (2018)

    Google Scholar 

  3. M.I.A. El Aal, M.M. Awd Allah, and M.A. Abd El‐baky, Carbon‐glass reinforced epoxy hybrid composites for crashworthy structural applications. Polym. Compos. 44(5), 2910–2924 (2023). https://doi.org/10.1002/pc.27290

    Article  CAS  Google Scholar 

  4. M.R. Bambach, H.H. Jama, M. Elchalakani, Thin-Walled Struct. 47, 1112 (2009)

    Google Scholar 

  5. Z. Li, R. Chen, F. Lu, Thin-Walled Struct. 124, 343 (2018)

    Google Scholar 

  6. J. Wei, Z. Xie, W. Zhang, X. Luo, Y. Yang, B. Chen, Eng. Struct. 230, 111599 (2021)

    Google Scholar 

  7. C. Zhang, C. Duan, L. Sun, in "Structures" Ed. (Eds.), 550, Year of Converence.

  8. H. Alshahrani, T. A. Sebaey, M.M. Awd Allah, M. A. Abd El‐baky, Metal/polymer composite cylinders for crash energy absorption applications. Polym. Compos. 43(12), 8771–8783 (2022). https://doi.org/10.1002/pc.27060

    Article  CAS  Google Scholar 

  9. L.-M. Tian, M.-H. Li, L. Li, D.-Y. Li, C. Bai, Thin-Walled Struct. 182, 110219 (2023)

    Google Scholar 

  10. A. Mamalis, D. Manolakos, M. Ioannidis, P. Kostazos, C. Dimitriou, Thin-walled struct. 41, 891 (2003)

    Google Scholar 

  11. M.A. Abd El-baky, D.A. Hegazy, M.A. Hassan, J. Indust. Text. 51, 6403S (2022)

    CAS  Google Scholar 

  12. L.-M. Tian, B.-B. Jin, L. Li, J. Struct. Eng. 149, 04023110 (2023)

    Google Scholar 

  13. S. Li, X. Guo, Q. Li, D. Ruan, G. Sun, On lateral compression of circular aluminum, CFRP and GFRP tubes. Compos. Struct. 232, 111534 (2020). https://doi.org/10.1016/j.compstruct.2019.111534

    Article  Google Scholar 

  14. S. Li, X. Guo, Q. Li, G. Sun, On lateral crashworthiness of aluminum/composite hybrid structures. Compos. Struct. 245, 112334 (2020). https://doi.org/10.1016/j.compstruct.2020.112334

    Article  Google Scholar 

  15. A.G. Mamalis, D.E. Manolakos, M.B. Ioannidis, D.P. Papapostolou, Compos. Struct. 69, 407 (2005)

    Google Scholar 

  16. H. Yu, J. Zhang, M. Fang, T. Ma, B. Wang, Z. Zhang, Z. Hu, H. Li, X. Cao, C. Ding, Compos. Pt A Appl. Sci. Manuf. 174, 107715 (2023)

    Google Scholar 

  17. K. Yang, J. Guan, K. Numata, C. Wu, S. Wu, Z. Shao, R.O. Ritchie, Nat. Commun. 10, 3786 (2019)

    PubMed  PubMed Central  Google Scholar 

  18. C. Luo, L. Wang, Y. Xie, B. Chen, A new conjugate gradient method for moving force identification of vehicle–bridge system. J. Vibr. Eng. Technol (2022). https://doi.org/10.1007/s42417-022-00824-1

    Article  Google Scholar 

  19. D.A. Hegazy, M.M. Awd Allah, H. Alshahrani, T.A. Sebaey, M.A. Abd El‐baky, Effect of alumina nano‐particles on collapse behavior and energy absorption of laterally loaded glass/epoxy composite tubes. Polym. Compos (2023). https://doi.org/10.1002/pc.27630

    Article  Google Scholar 

  20. M.A. Abd El-baky, D.A. Hegazy, M.A. Hassan, Appl. Compos. Mater. 29, 1195 (2022)

    Google Scholar 

  21. Z. Wang, X. Jin, Q. Li, G. Sun, On crashworthiness design of hybrid metal-composite structures. Int. J. Mech. Sci. 171, 105380 (2020). https://doi.org/10.1016/j.ijmecsci.2019.105380

    Article  Google Scholar 

  22. S. Boria, A. Scattina, G. Belingardi, Proc. Struct. Integr. 8, 102 (2018)

    Google Scholar 

  23. S. Ming, Z. Song, C. Zhou, K. Du, C. Teng, Y. Wang, S. Xu, B. Wang, The crashworthiness design of metal/CFRP hybrid tubes based on origami-ending approach: experimental research. Compos. Struct. 279, 114843 (2022). https://doi.org/10.1016/j.compstruct.2021.114843

    Article  Google Scholar 

  24. R. Kalhor, H. Akbarshahi, S.W. Case, Compos. Struct. 147, 231 (2016)

    Google Scholar 

  25. Y.-Y. Wang, M. Lou, Y. Wang, W.-G. Wu, F. Yang, China Ocean Eng. 36, 614 (2022)

    Google Scholar 

  26. Y. Wang, M. Lou, Y. Wang, C. Fan, C. Tian, X. Qi, Ocean Eng. 280, 114542 (2023)

    Google Scholar 

  27. Ö. Özbek, Ö. Y. Bozkurt, A. Erkliğ, Development of a trigger mechanism with circular cut-outs to improve crashworthiness characteristics of glass fiber-reinforced composite pipes. J. Brazilian Soc. Mech. Sci. Eng. 44, 1–14 (2022). https://doi.org/10.1007/s40430-021-03304-x

    Article  Google Scholar 

  28. Z. Song, S. Ming, T. Li, K. Du, C. Zhou, B. Wang, Improving the energy absorption capacity of square CFRP tubes with cutout by introducing chamfer. Int. J. Mech. Sci. 189, 105994 (2021). https://doi.org/10.1016/j.ijmecsci.2020.105994

    Article  Google Scholar 

  29. L. Zhang, D. Xiong, Z. Su, J. Li, L. Yin, Z. Yao, G. Wang, L. Zhang, H. Zhang, Mater. Tod. Communicat. 33, 104301 (2022)

    CAS  Google Scholar 

  30. W. Shun, M. Qi-hua, G. Xue-hui, Z. Tian-jun, Polym. Compos. 42, 5280 (2021)

    Google Scholar 

  31. D. Fan, M. Qi-hua, G. Xue-hui, Z. Tianjun, Polym. Compos. 42, 2019 (2021)

    CAS  Google Scholar 

  32. Q.-H. Ma, K. Wang, X.-H. Gan, Y.-X. Tian, Int. J. Crashworthiness 27, 1317 (2021)

    Google Scholar 

  33. Y.B. Zha, S. Wang, Qh. Ma, H. Zhang, Xue-hui, Tj. Zhou, Polym. Compos. 43, 4660 (2022)

    CAS  Google Scholar 

  34. M.A.A. El-Baky, M.M.A. Allah, M. Kamel, W. Abd-Elaziem, Sci. Rep. 12, 21097 (2022)

    CAS  PubMed  PubMed Central  Google Scholar 

  35. V. Mishra, S. Biswas, Proced. Eng. 51, 561 (2013)

    CAS  Google Scholar 

  36. M.A. Abd El-Baky, M.A. Attia, M.M. Abdelhaleem, M.A. Hassan, J. Nat. Fib. 19, 954 (2020)

    Google Scholar 

  37. S. Vigneshwaran, R. Sundarakannan, K.M. John, R.D. Johnson, K.A. Prasath, S. Ajith, V. Arumugaprabu, M. Uthayakumar, Recent advancement in the natural fiber polymer composites: a comprehensive review. J. Clean. Prod. 277, 124109  (2020). https://doi.org/10.1016/j.jclepro.2020.124109

    Article  CAS  Google Scholar 

  38. D. Gon, K. Das, P. Paul, S. Maity, Int. J. Text. Sci. 1, 84 (2013)

    Google Scholar 

  39. S.S. Shah, M.N. Shaikh, M.Y. Khan, M.A. Alfasane, M.M. Rahman, M.A. Aziz, Chem. Rec. 21, 1631 (2021)

    CAS  PubMed  Google Scholar 

  40. M.A. Abd El-baky, Fib. Polym. 18, 2417 (2017)

    CAS  Google Scholar 

  41. K.S. Ahmed, S. Vijayarangan, J. Appl. Polym. Sci. 104, 2650 (2007)

    CAS  Google Scholar 

  42. H. Alshahrani, T.A. Sebaey, M.M. Awd Allah, M.A. Abd El-baky, Jute-basalt reinforced epoxy hybrid composites for lightweight structural automotive applications. J. Compos. Mater. 57(7), 1315–1330 (2023). https://doi.org/10.1177/00219983231155013

    Article  CAS  Google Scholar 

  43. T. Hilditch, D. Atwell, M. Easton, M. Barnett, Mater. Des. 30, 2316 (2009)

    CAS  Google Scholar 

  44. Q. Estrada, D. Szwedowicz, A. Rodriguez-Mendez, M. Elías-Espinosa, J. Silva-Aceves, J. Bedolla-Hernández, O.A. Gómez-Vargas, Thin-Walled Struct. 140, 43 (2019)

    Google Scholar 

  45. G. Balaji, K. Annamalai, An experimental and numerical scrutiny of crashworthiness variables for square column with V-notch and groove initiators under quasi-static loading. Cog. Eng. 4(1), 1364118 (2017). https://doi.org/10.1080/23311916.2017.1364118

    Article  Google Scholar 

  46. M.A.A. El-baky, M.M.A. Allah, M. Kamel, W. Abdel-Aziem, Fabrication of glass/jute hybrid composite over wrapped aluminum cylinders: an advanced material for automotive applications. Fib. Polym. 24(1), 143–155 (2023). https://doi.org/10.1007/s12221-023-00116-9

    Article  Google Scholar 

  47. M.M. Awd Allah, M.A. Abd El-baky, H. Alshahrani, T.A. Sebaey, D.A. Hegazy, Multi attribute decision making through COPRAS on tensile properties of hybrid fiber metal laminate sandwich structures for aerospace and automotive industries. J. Compos. Mater. 57(24):3757–3773 (2023). https://doi.org/10.1177/00219983231194260

    Article  CAS  Google Scholar 

  48. M.A. Abd El-baky, M.A. Attia, M. Kamel, Plast. Rubb. Compos. 47, 47 (2018)

    CAS  Google Scholar 

  49. M. Abd El-Baky, M. Attia, J. Thermop. Compos. Mater. 32, 228 (2019)

    CAS  Google Scholar 

  50. M.A.A. El-Baky, M.M.A. Allah, M. Kamel, W. Abd-Elaziem, Sci. Rep. 12, 21101 (2022)

    CAS  PubMed  PubMed Central  Google Scholar 

  51. M.M.A. Allah, D.A. Hegazy, H. Alshahrani, T.A. Sebaey, M.A.A. El-baky, Fiber metal laminates based on natural/synthesis fiber composite for vehicles industry: an experimental comparative study. Fib. Polym. 24(8), 2877–2889 (2023). https://doi.org/10.1007/s12221-023-00281-x

    Article  CAS  Google Scholar 

  52. D. Saber, M.A. Abd El-baky, M.A. Attia, Fib. Polym. 22, 2447 (2021)

    CAS  Google Scholar 

  53. M.M. Awd Allah, D.A. Hegazy, H. Alshahrani, T.A. Sebaey, M.A. Abd El‐baky, Polym. Compos. (2023)

  54. M.A. Guler, M.E. Cerit, B. Bayram, B. Gerçeker, E. Karakaya, The effect of geometrical parameters on the energy absorption characteristics of thin-walled structures under axial impact loading. Int. J. Crashworthiness 15(4), 377–390 (2010). https://doi.org/10.1080/13588260903488750

    Article  Google Scholar 

  55. H. Alshahrani, T.A. Sebaey, M.M. Awd Allah, M.A. Abd El-baky, J. Compos. Mater. 57, 1579 (2023)

    Google Scholar 

  56. E.F. Abdewi, S. Sulaiman, A.M.S. Hamouda, E. Mahdi, Thin-Walled Struct. 46, 320 (2008)

    Google Scholar 

  57. M.M. Awd Allah, W. Abdel-Aziem, M.A. Abd El-baky, Fib. Polym. 1 (2023)

  58. Awd Allah, M. M., Abd El-baky, M. A., Hassan, M. A., Shaker, A. Crashworthiness performance of thin-walled glass/epoxy square tubes with circular cutouts: an experimental study. Fib. Polym. 23(11), 3268–3281 (2022). https://doi.org/10.1007/s12221-022-0383-0

    Article  CAS  Google Scholar 

  59. M. Mirzaei, M. Shakeri, M. Sadighi, H. Akbarshahi, Compos. Struct. 94, 1959 (2012)

    Google Scholar 

  60. M.A. Attia, M.A. Abd El-Baky, M.A. Hassan, T.A. Sebaey, E. Mahdi, Polym. Compos. 39, E2245 (2018)

    CAS  Google Scholar 

  61. M.M. Awd Allah, A. Shaker, M.A. Hassan, M.A. Abd El‐baky, Polym. Compos. (2022)

  62. H. Alshahrani, T. A. Sebaey, M.M. Awd Allah, M.A. Abd El-baky, Quasi-static axial crushing performance of thin-walled tubes with circular hole discontinuities. J. Compos. Mater. 56(27), 4195–4218 (2022). https://doi.org/10.1177/00219983221129016

    Article  CAS  Google Scholar 

  63. Q. Liu, K. Liufu, Z. Cui, J. Li, J. Fang, Q. Li, Multiobjective optimization of perforated square CFRP tubes for crashworthiness. Thin-Walled Struct. 149, 106628 (2020). https://doi.org/10.1016/j.tws.2020.106628

    Article  Google Scholar 

  64. A. Taştan, E. Acar, M.A. Güler, Ü. Kılınçkaya, Thin-Walled Struct. 107, 543 (2016)

    Google Scholar 

  65. Z. Su, J. Meng, Y. Su, Adv. Nano Res. 14, 355 (2023)

    Google Scholar 

  66. J. Rouzegar, H. Assaee, S.M. Elahi, H. Asiaei, J. Braz. Soc. Mech. Sci. Eng. 40 (2018)

  67. A.G. Mamalis, D.E. Manolakos, K.N. Spentzas, M.B. Ioannidis, S. Koutroubakis, P.K. Kostazos, The effect of the implementation of circular holes as crush initiators to the crushing characteristics of mild steel square tubes: experimental and numerical simulation. Int. J. Crashworthiness 14(5), 489–501 (2009). https://doi.org/10.1080/13588260902826547

    Article  Google Scholar 

  68. A. Baroutaji, M. Sajjia, A.-G. Olabi, Thin-Walled Struct. 118, 137 (2017)

    Google Scholar 

Download references

Acknowledgements

The author would like to thank Prince Sultan University for their support. The authors are thankful to the Deanship of Scientific Research at Najran University for funding this work, under the Research Groups Funding program grant code (NU/RG/SERC/12/8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud M. Awd Allah.

Ethics declarations

Conflict of Interest

No potential conflict of interest was reported by the authors.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allah, M.M.A., El-baky, M.A.A., Alshahrani, H. et al. Crashworthiness of Hybrid Pipes with Triggering Mechanism Under Quasi-static Axial Compression. Fibers Polym 24, 4397–4411 (2023). https://doi.org/10.1007/s12221-023-00377-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-023-00377-4

Keywords

Navigation