Skip to main content
Log in

A Mathematical Model of Flexural-Creep Behaviour for Future Service Expectancy of a GFRP Composite Cross-Arm with the Influence of Outdoor Temperature

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Exposure to high temperatures can damage GFRP laminates’ mechanical properties and, as a result, degrade their long-term performance, leading to rupture during their service life. Therefore, this study investigated the flexural-creep behaviour of pultruded glass fibre-reinforced polymer (pGFRP) when subjected to elevated temperatures and utilised two mathematical models to evaluate the structure's serviceability when subjected to a variety of stress levels. Two main parameters were investigated: elevated temperature (25 to 40 °C) and constant load levels (12%, 24%, and 37%), whereas the pGFRP specimens were monitored for 720 h (30 days). Furthermore, the experimental work has been paired with mathematical models, namely, Findley’s power law model and Burger’s model, to predict the life span of a pGFRP cross-arm according to the data obtained from creep tests. Results showed the specimens failed in a brittle manner as expected under the static 4-point bending tests with an average ultimate strength of 242.6 MPa. Moreover, both models used to simulate the creep behaviour of the GFRP laminates matched very well with the experimental data. However, these models showed a substantial difference in the strain predicted over the 120,000 h period, with Burger’s model predicting the specimens to reach the ultimate strain in 9.4 to 11.4 years, depending on the stress level, while Findley’s model only showed a minimal increase in the total strain. This suggests that Burger’s model might be more conservative and more reasonable for creep at elevated temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author, [Agusril@uniten.edu.my]. The data are not publicly available due to restrictions, as they contain sensitive information that could compromise the privacy and confidentiality of research participants. In order to protect the privacy rights of the participants, access to the data can only be granted upon request and after appropriate ethical approvals and data protection measures are in place.

References

  1. J.M. Kenny, L. Nicolais, Science and technology of polymer composites. Compr. Polym. Sci. Suppl. (1989). https://doi.org/10.1016/b978-0-08-096701-1.00236-6

    Article  Google Scholar 

  2. A.B.M. Supian, S.M. Sapuan, M.Y.M. Zuhri, E.S. Zainudin, H.H. Ya, Hybrid reinforced thermoset polymer composite in energy absorption tube application: a review. Def. Technol. 14, 291–305 (2018). https://doi.org/10.1016/j.dt.2018.04.004

    Article  Google Scholar 

  3. V.K. Balla, K.H. Kate, J. Satyavolu, P. Singh, J.G.D. Tadimeti, Additive manufacturing of natural fiber reinforced polymer composites: Processing and prospects. Compos. Part B Eng. 174, 106956 (2019). https://doi.org/10.1016/j.compositesb.2019.106956

    Article  CAS  Google Scholar 

  4. A. Kootsookos, A.P. Mouritz, Seawater durability of glass- and carbon-polymer composites. Compos. Sci. Technol. 64, 1503–1511 (2004). https://doi.org/10.1016/j.compscitech.2003.10.019

    Article  CAS  Google Scholar 

  5. M.R.M. Jamir, M.S.A. Majid, A. Khasri, Natural lightweight hybrid composites for aircraft structural applications. Sustain Compos. Aerosp. Appl. (2018). https://doi.org/10.1016/B978-0-08-102131-6.00008-6

    Article  Google Scholar 

  6. M.S. Abu Bakar, M.S. Salit, M.Z. Mohamad Yusoff, E.S. Zainudin, H.H. Ya, The crashworthiness performance of stacking sequence on filament wound hybrid composite energy absorption tube subjected to quasi-static compression load. J. Mater. Res. Technol. 9, 654–666 (2020). https://doi.org/10.1016/j.jmrt.2019.11.006

    Article  CAS  Google Scholar 

  7. J. Chin, T. Nguyen, K. Aouadi, Effects of environmental exposure on fiber-reinforced plastic (FRP) materials used in construction. J. Compos. Technol. Res. 19, 205 (1997). https://doi.org/10.1520/CTR10120J

    Article  CAS  Google Scholar 

  8. S.V. Joshi, L.T. Drzal, A.K. Mohanty, S. Arora, Are natural fiber composites environmentally superior to glass fiber reinforced composites? Compos. Part A Appl. Sci. Manuf. 35, 371–376 (2004). https://doi.org/10.1016/j.compositesa.2003.09.016

    Article  CAS  Google Scholar 

  9. J. Nicholas, M. Mohamed, G.S. Dhaliwal, S. Anandan, K. Chandrashekhara, Effects of accelerated environmental aging on glass fiber reinforced thermoset polyurethane composites. Compos. Part B Eng. 94, 370–378 (2016). https://doi.org/10.1016/j.compositesb.2016.03.059

    Article  CAS  Google Scholar 

  10. A.L. Amir, M.R. Ishak, N. Yidris, M.Y.M. Zuhri, M.R.M. Asyraf, Advances of composite cross arms with incorporation of material core structures: manufacturability, recent progress and views. J. Mater. Res. Technol 13, 1115–1131 (2021). https://doi.org/10.1016/j.jmrt.2021.05.040

    Article  CAS  Google Scholar 

  11. M.S.A. Bakar, D. Mohamad, Z.A.M. Ishak, Z.M. Yusof, N. Salwi, Durability control of moisture degradation in GFRP cross arm transmission line towers. AIP Conf Proc. Doi 10(1063/1), 5066983 (2018)

    Google Scholar 

  12. H.K. Sharaf, M.R. Ishak, S.M. Sapuan, N. Yidris, Conceptual design of the cross-arm for the application in the transmission towers by using TRIZ–morphological chart–ANP methods. J. Mater. Res. Technol. 9, 9182–9188 (2020). https://doi.org/10.1016/j.jmrt.2020.05.129

    Article  Google Scholar 

  13. M. Selvaraj, S. Kulkarni, R.R. Babu, Analysis and experimental testing of a built-up composite cross arm in a transmission line tower for mechanical performance. Compos. Struct. 96, 1–7 (2013). https://doi.org/10.1016/j.compstruct.2012.10.013

    Article  Google Scholar 

  14. H. Jannat Alipour, S. Aminnejad, M. Jazaeri, Decreasing the right of way of transmission lines by using towers with polymer insulation arms. POWERENG 2007 Int Conf Power Eng - Energy Electr Drives Proc (2007). https://doi.org/10.1109/POWERENG.2007.4380114

    Article  Google Scholar 

  15. X. Yang, N. Li, Z. Peng, J. Liao, Q. Wang, Potential distribution computation and structure optimization for composite cross-arms in 750 kV AC transmission line. IEEE Trans Dielectr Electr Insul 21, 1660–1669 (2014). https://doi.org/10.1109/TDEI.2014.004130

    Article  Google Scholar 

  16. A. Elawady, A. El Damatty, Longitudinal force on transmission towers due to non-symmetric downburst conductor loads. Eng Struct 127, 206–226 (2016). https://doi.org/10.1016/j.engstruct.2016.08.030

    Article  Google Scholar 

  17. H.K. Sharaf, M.R. Ishak, S.M. Sapuan, N. Yidris, A. Fattahi, Experimental and numerical investigation of the mechanical behavior of full-scale wooden cross arm in the transmission towers in terms of load-deflection test. J. Mater. Res. Technol. 9, 7937–7946 (2020). https://doi.org/10.1016/j.jmrt.2020.04.069

    Article  Google Scholar 

  18. M.R.M. Asyraf, M.R. Ishak, S.M. Sapuan, N. Yidris, Conceptual design of creep testing rig for full-scale cross arm using TRIZ-Morphological chart-analytic network process technique. J. Mater. Res. Technol. 8, 5647–5658 (2019). https://doi.org/10.1016/j.jmrt.2019.09.033

    Article  CAS  Google Scholar 

  19. A.B.M. Supian, M. Jawaid, B. Rashid, H. Fouad, N. Saba, H.N. Dhakal, R. Khiari, Mechanical and physical performance of date palm / bamboo fibre reinforced epoxy hybrid composites. J. Mater. Res. Technol. 15, 1330–1341 (2021). https://doi.org/10.1016/j.jmrt.2021.08.115

    Article  CAS  Google Scholar 

  20. S.M. Sapuan, H.S. Aulia, R.A. Ilyas, A. Atiqah, T.T. Dele-Afolabi, M.N. Nurazzi, A.B.M. Supian, M.S.N. Atikah, Mechanical properties of longitudinal basalt/woven-glass-fiber-reinforced unsaturated polyester-resin hybrid composites. Polymers (Basel) 12, 1–14 (2020). https://doi.org/10.3390/polym12102211

    Article  CAS  Google Scholar 

  21. S. Beddu, A. Syamsir, Z.A.M. Ishak, Z.M. Yusof, N.S. Hudi, S. Nabihah, Creep behavior of glass fibre reinforced polymer structures in crossarms transmission line towers. AIP Conf Proc. Doi 10(1063/1), 5066995 (2018)

    Google Scholar 

  22. A. Kaboorani, P. Blanchet, A. Laghdir, A rapid method to assess viscoelastic and mechanosorptive creep in wood. Wood Fiber Sci 45, 1–13 (2013)

    Google Scholar 

  23. N. Sun, C.E. Frazier, Time/temperature equivalence in the dry wood creep response. Holzforschung 61, 702–706 (2007). https://doi.org/10.1515/HF.2007.114

    Article  CAS  Google Scholar 

  24. M. Pour-Ghaz, B.L.H. Miller, O. Khalaf Alla, S. Rizkalla, Do mechanical and environmental loading have a synergistic effect on the degradation of pultruded glass fiber reinforced polymers? Compos. Part B Eng. 106, 344–355 (2016). https://doi.org/10.1016/j.compositesb.2016.09.007

    Article  CAS  Google Scholar 

  25. L. Ascione, V.P. Berardi, A. D’Aponte, Creep phenomena in FRP materials. Mech. Res. Commun. 43, 15–21 (2012). https://doi.org/10.1016/j.mechrescom.2012.03.010

    Article  Google Scholar 

  26. National Climate Center and Department of Meteorology Malaysia, Malaysia General Climate Information Report (2021). https://www.met.gov.my

  27. J. Hodgkin, Thermosets: epoxies and polyesters. Encycl. Mater. Sci. Technol. (2001). https://doi.org/10.1016/B0-08-043152-6/01660-0

    Article  Google Scholar 

  28. R.M. Guedes, Creep and fatigue in polymer matrix composites. Sec. Edi. (2019). https://doi.org/10.1016/B978-0-08-102601-4.09991-4

    Article  Google Scholar 

  29. V. Crupi, E. Guglielmino, L. Scappaticci, G. Risitano, Fatigue assessment by energy approach during tensile and fatigue tests on PPGF35. Procedia Struct. Integr. 3, 424–431 (2017). https://doi.org/10.1016/j.prostr.2017.04.068

    Article  Google Scholar 

  30. W.N. Findley, 26-Year creep and recovery of poly (vinyl chloride) and polyethylene. Polym Eng Sci 27, 582–585 (1987). https://doi.org/10.1002/pen.760270809

    Article  CAS  Google Scholar 

  31. C.M. Wu, P.C. Lin, R. Murakami, Long-term creep behavior of self-reinforced PET composites. Express Polym. Lett. 11, 820–831 (2017). https://doi.org/10.3144/expresspolymlett.2017.78

    Article  CAS  Google Scholar 

  32. K. Jayaprakash, Y.M. Desai, N.K. Naik, Fatigue behavior of [0n/90n]s composite cantilever beam under tip impulse loading. Compos. Struct. 99, 255–263 (2013). https://doi.org/10.1016/j.compstruct.2012.12.009

    Article  Google Scholar 

  33. M.F. Sá, A.M. Gomes, J.R. Correia, N. Silvestre, Creep behavior of pultruded GFRP elements - Part 1: literature review and experimental study. Compos. Struct. 93, 2450–2459 (2011). https://doi.org/10.1016/j.compstruct.2011.04.013

    Article  Google Scholar 

  34. A.H. Muliana, R.M. Haj-Ali, Analysis for creep behavior and collapse of thick-section composite structures. Compos. Struct. 73, 331–341 (2006). https://doi.org/10.1016/j.compstruct.2005.02.006

    Article  Google Scholar 

  35. A.N. Johari, M.R. Ishak, Z. Leman, M.Z.M. Yusoff, M.R.M. Asyraf, Creep behaviour monitoring of short-term duration for fiber-glass reinforced composite cross-arms with unsaturated polyester resin samples using conventional analysis. J. Mech. Eng. Sci. 14, 7361–7368 (2020). https://doi.org/10.15282/jmes.14.4.2020.04.0578

    Article  CAS  Google Scholar 

  36. L.S. Lee, Creep and time-dependent response of composites. Durab. Compos. Civ. Struct. Appl. (2005). https://doi.org/10.1533/9781845693565.1.150

    Article  Google Scholar 

  37. M.F. Sá, A.M. Gomes, J.R. Correia, N. Silvestre, Creep behavior of pultruded GFRP elements - part 2: analytical study. Compos. Struct. 93, 2409–2418 (2011). https://doi.org/10.1016/j.compstruct.2011.04.001

    Article  Google Scholar 

  38. F. Bouziadi, B. Boulekbache, A. Haddi, M. Hamrat, C. Djelal, Finite element modeling of creep behavior of FRP-externally strengthened reinforced concrete beams. Eng. Struct. (2020). https://doi.org/10.1016/j.engstruct.2019.109908

    Article  Google Scholar 

  39. M. Garrido, J.R. Correia, T. Keller, Effect of service temperature on the flexural creep of vacuum infused GFRP laminates used in sandwich floor panels. Compos. Part. B Eng. 90, 160–171 (2016). https://doi.org/10.1016/j.compositesb.2015.12.027

    Article  CAS  Google Scholar 

  40. R. Huseyin, E. Eseceli, Hooke’s Law Experiment. Univ. Southampt. (2020). https://doi.org/10.13140/RG.2.2.30449.63845

    Article  Google Scholar 

  41. M.R.M. Asyraf, M.R. Ishak, S.M. Sapuan, N. Yidris, Utilization of bracing arms as additional reinforcement in pultruded glass fiber-reinforced polymer composite cross-arms: Creep experimental and numerical analyses. Polymers (Basel) 13, 1–16 (2021). https://doi.org/10.3390/polym13040620

    Article  CAS  Google Scholar 

  42. X. Li, W. Liu, H. Fang, R. Huo, P. Wu, Flexural creep behavior and life prediction of GFRP-balsa sandwich beams. Compos. Struct. 224, 111009 (2019). https://doi.org/10.1016/j.compstruct.2019.111009

    Article  Google Scholar 

  43. C. Yeol, L. YR., Time-dependent deformation of pultruded fiber reinforced polymer composite columns. J. Compos. Constr. 7, 356–362 (2003). https://doi.org/10.1061/(ASCE)1090-0268(2003)7:4(356)

    Article  CAS  Google Scholar 

  44. Y. Nakazato, S. Zhu, A. Usuki, M. Kato, Analysis and prediction of creep viscoelasticity in nylon 6 clay hybrid nanocomposites. J. Solid Mech. Mater. Eng. 4, 856–863 (2010). https://doi.org/10.1299/jmmp.4.856

    Article  Google Scholar 

  45. J.L. Yang, Z. Zhang, A.K. Schlarb, K. Friedrich, On the characterization of tensile creep resistance of polyamide 66 nanocomposites. Part II: Modeling and prediction of long-term performance. Polymer (Guildf) 47, 6745–6758 (2006). https://doi.org/10.1016/j.polymer.2006.07.060

    Article  CAS  Google Scholar 

  46. J. Rech, E. Ramakers-van Dorp, B. Möginger, B. Hausnerova, Modeling of creep behavior of particulate composites with focus on interfacial adhesion effect. Int J Mol Sci (2022). https://doi.org/10.3390/ijms232214120

    Article  PubMed  PubMed Central  Google Scholar 

  47. A.S.T.M. Standard, D6272–17, Standard test method for flexural properties of unreinforced and reinforced plastics and electrical insulating materials by four-point bending. ASTM Stand (2017). https://doi.org/10.1520/D6272-10.1

    Article  Google Scholar 

  48. R. Hibbeler, Structural Analysis, 9th edn. (Pearson, 2015)

    Google Scholar 

  49. A.S.T.M. Standard, D2990–17, Standard test methods for tensile, compressive, and flexural creep and creep- rupture of plastics. ASTM Stand. (2017). https://doi.org/10.1520/D2990-09.2

    Article  Google Scholar 

  50. L.C. Bank, A.S. Mosallam, Creep and failure of a full-size fiber-reinforced plastic pultruded frame. Compos. Eng. 2, 213–227 (1992). https://doi.org/10.1016/0961-9526(92)90005-Q

    Article  Google Scholar 

  51. J.T. Mottram, Short- and long-term structural properties of pultruded beam assemblies fabricated using adhesive bonding. Compos. Struct. 25, 387–395 (1993). https://doi.org/10.1016/0263-8223(93)90186-T

    Article  Google Scholar 

  52. M. Ghyslaine, M. Yaghoub, Compression creep of pultruded e-glass-reinforced-plastic angles. J. Mater. Civ. Eng. 7, 269–276 (1995). https://doi.org/10.1061/(ASCE)0899-1561(1995)7:4(269)

    Article  Google Scholar 

  53. D.W. Scott, A.-H. Zureick, Compression creep of a pultruded E-glass/vinylester composite. Compos. Sci. Technol. 58, 1361–1369 (1998). https://doi.org/10.1016/S0266-3538(98)00009-8

    Article  CAS  Google Scholar 

  54. A. Alhayek, A. Syamsir, A.B.M. Supian, F. Usman, M.R.M. Asyraf, M.A. Atiqah, Flexural creep behaviour of pultruded GFRP composites cross-arm: a comparative study on the effects of stacking sequence. Polymers (Basel) 14, 1–15 (2022). https://doi.org/10.3390/polym14071330

    Article  CAS  Google Scholar 

  55. H. Fu, M. Dun, H. Wang, W. Wang, R. Ou, Y. Wang, T. Liu, Q. Wang, Creep response of wood flour-high-density polyethylene/laminated veneer lumber coextruded composites. Constr. Build Mater. 237, 117499 (2020). https://doi.org/10.1016/j.conbuildmat.2019.117499

    Article  CAS  Google Scholar 

  56. W.N. Findley, Creep characteristics of plastics. Symp. Plast. ASTM 1944, 118–134 (1944)

    Google Scholar 

  57. M.R.M. Asyraf, M.R. Ishak, S.M. Sapuan, N. Yidris, Influence of additional bracing arms as reinforcement members in wooden timber cross-arms on their long-term creep responses and properties. Appl. Sci. 11, 2061 (2021). https://doi.org/10.3390/app11052061

    Article  CAS  Google Scholar 

  58. M.R.M. Asyraf, M.R. Ishak, S.M. Sapuan, N. Yidris, Comparison of static and long-term creep behaviors between balau wood and glass fiber reinforced polymer composite for cross-arm application. Fibers Polym 22, 793–803 (2021). https://doi.org/10.1007/s12221-021-0512-1

    Article  CAS  Google Scholar 

  59. C.J. Pérez, V.A. Alvarez, A. Vázquez, Creep behaviour of layered silicate/starch-polycaprolactone blends nanocomposites. Mater. Sci. Eng. A 480, 259–265 (2008). https://doi.org/10.1016/j.msea.2007.07.031

    Article  CAS  Google Scholar 

  60. P.K. Chandra, P.J. Sobral, do A., Calculation of viscoelastic properties of edible films: application of three models. Ciência e Tecnol. Aliment 20, 250–256 (2006). https://doi.org/10.1590/s0101-20612000000200021

    Article  Google Scholar 

  61. M.R.M. Asyraf, M.R. Ishak, S.M. Sapuan, N. Yidris, R.A. Ilyas, Woods and composites cantilever beam: a comprehensive review of experimental and numerical creep methodologies. J. Mater. Res. Technol. 9, 6759–6776 (2020). https://doi.org/10.1016/j.jmrt.2020.01.013

    Article  Google Scholar 

  62. A. Hao, Y. Chen, J.Y. Chen, Creep and recovery behavior of kenaf/polypropylene nonwoven composites. J. Appl. Polym. Sci. 131, 8864–8874 (2014). https://doi.org/10.1002/app.40726

    Article  CAS  Google Scholar 

  63. V.P. Cyras, J.F. Martucci, S. Iannace, A. Vazquez, Influence of the fiber content and the processing conditions on the flexural creep behavior of sisal-PCL-starch composites. J. Thermoplast. Compos. Mater. 15, 253–265 (2002). https://doi.org/10.1177/0892705702015003454

    Article  Google Scholar 

  64. V.A. Alvarez, J.M. Kenny, A. Vázquez, Creep behavior of biocomposites based on sisal fiber reinforced cellulose derivatives/starch blends. Polym. Compos. 25, 280–288 (2004). https://doi.org/10.1002/pc.20022

    Article  CAS  Google Scholar 

  65. M.R. Wisnom, Size effect in the testing of fibre-composite materials. Compos. Sci. Technol. 59, 1937–1957 (1999)

    Article  CAS  Google Scholar 

  66. K.A. Harries, Q. Guo, D. Cardoso, Creep and creep buckling of pultruded glass-reinforced polymer members. Compos. Struct. 181, 315–324 (2017). https://doi.org/10.1016/j.compstruct.2017.08.098

    Article  Google Scholar 

  67. V.P. Berardi, M. Perrella, L. Feo, G. Cricrì, Creep behavior of GFRP laminates and their phases: experimental investigation and analytical modeling. Compos. Part B Eng. 122, 136–144 (2017). https://doi.org/10.1016/j.compositesb.2017.04.015

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to acknowledge the IRMC UNITEN and the Institute of Energy Infrastructure (IEI) for the financial support provided through BOLD 2022, through Project No: J510050002/2022004 research grant. The authors also acknowledge Tenaga Nasional Berhad (TNB) and UNITEN R & D for the lab facilities from the TNB Seeding Fund: U-TS-RD-21-10.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agusril Syamsir.

Ethics declarations

Conflict of interest

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alhayek, A., Syamsir, A., Supian, A.B.M. et al. A Mathematical Model of Flexural-Creep Behaviour for Future Service Expectancy of a GFRP Composite Cross-Arm with the Influence of Outdoor Temperature. Fibers Polym 24, 2425–2437 (2023). https://doi.org/10.1007/s12221-023-00235-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-023-00235-3

Keywords

Navigation