Skip to main content
Log in

Research on Mechanism, Properties, and Application of Oxidized–Stretched Wool Fiber

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The quality of wool fiber is essential for wool textiles, especially for clothing manufacture and fabric comfort. Wool fiber stretching method is the physical–mechanical way to gain fine wool with short cycle time, low cost, and good outcome. While it still needs to improve the properties of the stretched wool products, to meet the market requirements. In this work, the mechanism and properties of wool fiber are investigated by combining oxidation and stretching methods, and the properties of yarns and fabrics made of the oxidized–stretched wool fiber after dyeing and other technological processes are compared. The results demonstrate that the properties of oxidized–stretched wool fiber and yarn are promoted, and the fabric products show higher qualities in the aspects, such as hand feeling, shrink-resist property, and dimensional stability. Moreover, it is demonstrated that the addition of gelatine can repair the damage of oxidized–stretched wool fiber, thereby enhancing the performance of wool textiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data included in this study are available upon request by contact with the corresponding author.

References

  1. X.L. Xiao, Z.H. Tao, Q. Kun, Smart Mater. Struct. 26, 3 (2017)

    Article  Google Scholar 

  2. J.T. Pelton, L.R. McLean, Anal. Biochem. 277, 2 (2000)

    Article  Google Scholar 

  3. J.L. Hu, M.I. Iqbal, S.F. Xin, Adv. Funct. Mater. 30, 51 (2020)

    Google Scholar 

  4. S. Zhu, H.J. Lian, Polymers 12, 7 (2020)

    Google Scholar 

  5. R. Laing, P. Swan, in Natural Fibres: Advances in Science and Technology Towards Industrial Applications, vol. 12, 2nd edn. ed. by R. Fangueiro, S. Rana (Springer Science, Berlin, 2016), pp. 9–34

  6. K. Senthil, S.K. Boominathan, D.V.K. Raj, J. Nat. Fibers (2021). https://doi.org/10.1080/15440478.2021.1958406

    Article  Google Scholar 

  7. W.S. Howorth, P.H. Oliver, J. Text. Inst. Trans. 49, 11 (1958)

    Article  Google Scholar 

  8. X. Dong, T. Xing, G.Q. Chen, Coatings 10, 10 (2020)

    Google Scholar 

  9. C.W. Kan, C.W.M. Yuen, Fibers Polym. 6, 2 (2005)

    Article  Google Scholar 

  10. R. Mossotti, L. Guiseppina, I. Riccardo, M. Giorgio, M.R. Fabio, Text. Res. J. 79, 9 (2009)

    Article  Google Scholar 

  11. K. Millington, Text. Res. J. 68, 6 (1998)

    Article  Google Scholar 

  12. B.A. McGregor, M. Naebe, J. Text. Inst. 107, 5 (2016)

    Google Scholar 

  13. J.S. Church, A.S. Davie, P.J. Scammells, D.J. Tucker, Dyes Pigm. 39, 4 (1998)

    Google Scholar 

  14. D. Aeschlimann, M. Paulsson, J. Thromb. Haemostasis 71, 402–415 (1994)

    Article  CAS  Google Scholar 

  15. M. Feughelman, A two-phase structure for Keratin fibers. Text. Res. J. 29, 223–228 (1959)

    Article  Google Scholar 

  16. M. Feughelman, J. Appl. Polym. Sci. 83, 3 (2001)

    Google Scholar 

  17. R.P. Zhang, W.A. Yi, J. Cleaner Prod. 87, 961–965 (2015)

    Article  CAS  Google Scholar 

  18. Y. Jiang, L.J. Xun, L.F. Ming, Z.Z. Cai, L.Z. Jun, Y.M. Bo, L.L. Xin, J. Ind. Text. 49, 4 (2019)

    Article  Google Scholar 

  19. C. Zdzislaw, K. Ruszkowski, J. Nat. Fibers 11, 2 (2014)

    Google Scholar 

  20. A.I. Shaymaa, M.A. Taleb, M.A. Emran, S. Mowafi, A.M. Hashem, H. El-Sayed, J. Nat. Fibers. 19, 10 (2022)

    Google Scholar 

  21. Z.J. Cao, S.X. Xiao, Z. Qian, W. Juan, W. Gang, Biocatal. Biotransform. 39, 3 (2021)

    Article  Google Scholar 

  22. X.F. Hou, M.D. Dissertation. TJPU, Tianjing (2007)

  23. J. Zhe, Z.Y. Yi, W. Qiang, W. Ping, Y.Y. Yuan, M. Zhou, E.D. Li, J. Text. Inst. 113(6), 983–992 (2021). https://doi.org/10.1080/00405000.2021.1912952

    Article  CAS  Google Scholar 

  24. Y. Zhang, Z. Nan, W. Qiang, Y.Y. Yuan, W. Ping, Y.J. Gang, Fibers Polym. 21, 6 (2020)

    Google Scholar 

  25. L. Li, Q.C. Xia, L.C. Can, Fibres Text. East. Eur. 26, 4 (2018)

    Google Scholar 

  26. X.S. Wang, X. Lin, X.W. Lin, Appl. Surf. Sci. 258, 24 (2012)

    Google Scholar 

  27. A. Khoddami, H. Gong, G. Ghadimi, Fibers Polym. 13, 1 (2012)

    Article  Google Scholar 

  28. L. Xiong, L.H. Ling, Y.W. Dong, J. Donghua Univ. 31, 3 (2005)

    Google Scholar 

  29. J. Yao, Y. Liu, S. Yang, J. Liu, J. Eng. Fibers Fabr. 3, 2 (2008)

    Google Scholar 

  30. J.C. Pei, Y.Y. Bei, S.Z. Hui, Z.F. Dong, Carbohydr. Polym. 135, 189–203 (2016)

    Article  Google Scholar 

  31. W.D. Yu, L.H. Ling, Z.Y. Ting, Text. Res. J. 26, 1 (2005)

    Google Scholar 

  32. J.A. Cao, C.A. Billows, Polym. Int. 48, 10 (1999)

    Article  Google Scholar 

  33. J.M. Fan, M.D. Dissertation. XPU, Xi’an (2013)

  34. D.F. Zhao, X. Chen, Wool Text. J. 38(09), 35–38 (2010)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the [the Fundamental Research Funds for the Central Universities] under Grant [2232022G-01].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenliang Xue.

Ethics declarations

Conflict of Interest

No potential conflict of interest was reported by the author(s).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, K., Xue, W. Research on Mechanism, Properties, and Application of Oxidized–Stretched Wool Fiber. Fibers Polym 24, 131–141 (2023). https://doi.org/10.1007/s12221-023-00102-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-023-00102-1

Keywords

Navigation