Skip to main content
Log in

Preparation and Characterization of Polymeric Composites Assembled from Fiberglass Fabric Waste from the Wind Blades Manufacturing Process

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Currently, there is still no knowledge of the potential uses of the increasing post-industrial fiberglass fabric waste generated from wind turbine manufacturing industries. The present work proposes reusing this fiberglass fabric waste as reinforcement in new thermosetting polymer composites. Polyester composites with different numbers and stacking sequences of stitched and random scraps of fiberglass fabrics were prepared using a resin transfer molding process. Moreover, their thermal stability, flexural and tensile properties were evaluated. Results of the statistical analysis performed according to Tukey’s methodology indicated that the number of fiberglass layers is the decisive factor influencing the mechanical properties of the developed composites, whereas their stacking sequence does not have a significant influence. The composites with four layers of fiberglass fabric waste showed promising mechanical properties with flexural and tensile strengths higher than 205 and 115 MPa, respectively, and Young’s Modulus higher than 2700 MPa, enabling their use in numerous applications. On the other hand, the number of fiberglass fabric layers had only a small influence on the thermal stability of the composites of around 335 °C. Overall results showed that reusing fiberglass fabric waste as reinforcement in new polymer composites is a feasible way to valorize this waste from wind turbine industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Andersen, O. Eriksson, K. Hillman, and M. Wallhagen, Energies, 9, 999 (2016).

    Article  Google Scholar 

  2. P. Liu and C. Y. Barlow, Waste Manag., 62, 229 (2017).

    Article  Google Scholar 

  3. S. Djunisic, 3GWEC sees 330 GW of New Wind Globally by 2023, https://renewablesnow.com/news/gwec-sees-330-gw-of-new-wind-globally-by-2023-668140/ (Accessed January 24, 2020).

  4. J. Chen, J. Wang, and A. Ni, J. Reinf. Plast. Compos., 38, 567 (2019).

    Article  CAS  Google Scholar 

  5. Y. Noorollahi, S. M. Bina, and K. Rahmani, Int. J. Energy Policy Manag., 3, 8 (2018).

    Google Scholar 

  6. R. Cherrington, V. Goodship, J. Meredith, B. M. Wood, S. R. Coles, A. Vuillaume, A. Feito-Boirac, F. Spee, and K. Kirwan, Energy Policy, 47, 13 (2012).

    Article  Google Scholar 

  7. H. Albers, S. Greiner, H. Seifert, and U. Kühne, DEWI Mag., 34, 32 (2009).

    Google Scholar 

  8. S. Huysman, J. De Schaepmeester, K. Ragaert, J. Dewulf, and S. De Meester, Resour. Conserv. Recycl., 120, 46 (2017).

    Article  Google Scholar 

  9. A. V. Oskouei, M. Bazli, H. Ashrafi, and M. Imani, Polym. Test., 69, 417 (2018).

    Article  CAS  Google Scholar 

  10. E. E. Theotokoglou and G. A. Balokas, J. Reinf. Plast. Compos., 34, 101 (2015).

    Article  CAS  Google Scholar 

  11. A. Rahimizadeh, J. Kalman, K. Fayazbakhsh, and L. Lessard, Compos. Part B Eng., 175, 107101 (2019).

    Article  CAS  Google Scholar 

  12. D. S. Cousins, Y. Suzuki, R. E. Murray, J. R. Samaniuk, and A. P. Stebner, J. Clean. Prod., 209, 1252 (2019).

    Article  CAS  Google Scholar 

  13. D. Åkesson, Z. Foltynowicz, J. Christéen, and M. Skrifvars, J. Reinf. Plast. Compos., 31, 1136 (2012).

    Article  Google Scholar 

  14. S. Job, Reinf. Plast., 57, 19 (2013).

    Article  Google Scholar 

  15. J. Beauson, H. Lilholt, and P. Brøndsted, J. Reinf. Plast. Compos., 33, 1542 (2014).

    Article  Google Scholar 

  16. H. Rodin III, S. Nassiri, K. Englund, O. Fakron, and H. Li, Constr. Build. Mater., 187, 738 (2018).

    Article  CAS  Google Scholar 

  17. S. H. Mamanpush, H. Li, K. Englund, and A. Tavousi Tabatabaei, Waste and Biomass Valorization, 11, 3853 (2020).

    Article  CAS  Google Scholar 

  18. K. Larsen, Renew. Energy Focus, 9, 70 (2009).

    Article  Google Scholar 

  19. P. C. Guerrero, S. D. Mancini, and C. M. Toubia, HOLOS Environ., 147, 1519 (2011).

    Google Scholar 

  20. A. Yazdanbakhsh, L. C. Bank, K. A. Rieder, Y. Tian, and C. Chen, Resour. Conserv. Recycl., 128, 11 (2018).

    Article  Google Scholar 

  21. N. Singh, D. Hui, R. Singh, I. P. S. Ahuja, L. Feo, and F. Fraternali, Compos. Part B Eng., 115, 409 (2017).

    Article  CAS  Google Scholar 

  22. C. A. Mucelin and M. Bellini, Soc. Nat., 20, 111 (2008).

    Article  Google Scholar 

  23. T. P. Sathishkumar, S. Satheeshkumar, and J. Naveen, J. Reinf. Plast. Compos., 33, 1258 (2014).

    Article  CAS  Google Scholar 

  24. D. K. Rajak, D. D. Pagar, P. L. Menezes, and E. Linul, Polymers, 11, 1667 (2019).

    Article  CAS  Google Scholar 

  25. W. R. Stahel, Nature, 531, 435 (2016).

    Article  CAS  Google Scholar 

  26. N. J. Pagano and R. B. Pipes, J. Compos. Mater., 5, 50 (1971).

    Article  Google Scholar 

  27. H. P. S. A. Khalil, C. W. Kang, A. Khairul, R. Ridzuan, and T. O. Adawi, J. Reinf. Plast. Compos., 28, 1123 (2009).

    Article  Google Scholar 

  28. M. Koziol, J. Compos. Mater., 46, 1067 (2011).

    Article  Google Scholar 

  29. R. Potluri, R. S. Dheeraj, and G. V. V. N. G. Vital, Mater. Today Proc., 5, 5876 (2018).

    Article  CAS  Google Scholar 

  30. M. Bazli, H. Ashrafi, A. Jafari, X.-L. Zhao, R. K. S. Raman, and Y. Bai, Polymers, 11, 1401 (2019).

    Article  Google Scholar 

  31. K. Herbuś and P. Ociepka, MATEC Web of Conf., doi: https://doi.org/10.1051/matecconf/201711204022 (2017).

  32. A. Karimzadeh, M. Y. Yahya, M. N. Abdullah, and K. J. Wong, Fiber. Polym., 21, 1583 (2020).

    Article  CAS  Google Scholar 

  33. ASTM D790-03, “Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials”, ASTM International, West Conshohochen, PA, 2003.

  34. ASTM D3039-02, “Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials”, ASTM International,West Conshohochen, PA, 2002.

  35. E. O. Ogunsona, M. Misra, and A. K. Mohanty, Compos. Part A Appl. Sci. Manuf., 98, 32 (2017).

    Article  CAS  Google Scholar 

  36. F. Anjum, N. Gull, S. M. Khan, M. A. Munawar, A. Islam, S. I. Niazi, S. Zia, M. Shafiq, M. T. Z. Butt, and T. Jamil, Adv. Polym. Technol., 37, 929 (2018).

    Article  CAS  Google Scholar 

  37. N. C. Pereira, Rev. Mackenzie Eng. e Comput., 11, 23 (2012).

    Google Scholar 

  38. D. A. Jesson and J. F. Watts, Polym. Rev., 52, 321 (2012).

    Article  CAS  Google Scholar 

  39. F. A. López, M. I. Martín, I. García-Díaz, O. Rodríguez, F. J. Alguacil, and M. Romero, J. Environ. Prot., doi: https://doi.org/10.4236/jep.2012.38088 (2012).

  40. S. R. Naqvi, H. M. Prabhakara, E. A. Bramer, W. Dierkes, R. Akkerman, and G. Brem, Resour. Conserv. Recycl., 136, 118 (2018).

    Article  CAS  Google Scholar 

  41. N. Guermazi, N. Haddar, K. Elleuch, and H. F. Ayedi, Mater. Des., 56, 714 (2014).

    Article  CAS  Google Scholar 

  42. F. Rubino, A. Nistic, F. Tucci, and P. Carlone, J. Mar. Sci. Eng., 8, 26 (2020).

    Article  Google Scholar 

  43. M. Kara, M. Uyaner, and A. Avci, Compos. Struct., 123, 1 (2015).

    Article  Google Scholar 

  44. M. E. Hossain, J. Compos. Mater., 45, 2133 (2011).

    Article  CAS  Google Scholar 

  45. C. P. Pantelides, M. Asce, J. Nadauld, and L. Cercone, J. Compos. Constr., 7, 118 (2003).

    Article  Google Scholar 

  46. M. Shamsuddoha, L. P. Djukic, M. M. Islam, T. Aravinthan, and A. Manalo, J. Compos. Mater., 51, 1605 (2016).

    Article  Google Scholar 

  47. K. B. Katnam, A. J. Comer, D. Roy, L. F. M. Da Silva, and T. M. Young, J. Adhes., 91, 113 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully appreciate the financial support by the Coordination for the Improvement of Higher Education Personnel (CAPES) [funding code 001 and grant number 88887.464432/2019-00]. The authors are grateful to Wobben Windpower Indústria e Comércio Ltda. and Ashland Polímeros do Brasil S.A. for providing some of the materials used in the composites, and to Sinctronics for performing the thermogravimetric analysis of the composites.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jane M. F. Paiva.

Additional information

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernandes, A.P., Prado, K.S., Castanho, M.N. et al. Preparation and Characterization of Polymeric Composites Assembled from Fiberglass Fabric Waste from the Wind Blades Manufacturing Process. Fibers Polym 23, 3606–3614 (2022). https://doi.org/10.1007/s12221-022-4425-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-022-4425-4

Keywords

Navigation