Skip to main content
Log in

Dielectric Properties of Banana Fiber Filled Polypropylene Composites: Effect of Coupling Agent

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The goal of this article is to examine the effect of MAPP (malic anhydride grafted polypropylene) used as a coupling agent on the dielectric properties of polypropylene filled banana fiber composites. Banana fiber reinforced polypropylene composites were prepared by using twin screw extruder and injection molding apparatus. The dielectric parameters of both coupled and uncoupled composites were calculated in the experiment with temperatures from 30 °C to 150 °C in steps of 10 °C and frequencies in the 20 Hz to 10 MHz range. Composites prepared using a coupling agent and increasing the content of the banana fiber was found to have a major change in dielectric properties. Compared to un-coupled composites, the dielectric constant (ε′) has increased by up to 15–20% in coupled composites. Various polarization mechanisms can be related to boosting dielectric properties in coupled composites. Anomalous behavior in the transition region was shown by the dissipation factor in both composites. Low electrical conductivity has been demonstrated by coupled composites and can therefore be used for many insulating applications. Using TGA study, degradation temperatures of banana fiber, PP and composites were examined. Scanning electron microscopy morphological studies have shown that MAPP integration helps to achieve proper adhesion between banana fiber and polypropylene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Fares, F. M. AL-Oqla, and M. T. Hayajneh, Mater. Chem. Phys., 229, 174 (2019).

    Article  CAS  Google Scholar 

  2. R. Bhatnagar, G. Gupta, and S. Yadav, J. Sci. Eng. Res., 6, 4 (2015).

    Google Scholar 

  3. K. G. Satyanarayana, J. L. Guimarães, and F. Wypych, Compos. — A: Appl. Sci. Manuf., 38, 1694 (2007).

    Article  Google Scholar 

  4. N. Venkateshwaran and A. Elayaperumal, J. Reinf. Plast. Compos., 29, 15 (2010).

    Article  Google Scholar 

  5. A. Ivanovska, D. Cerovic, S. Maletic, I. Jankovic Castvan, K. Asanovic, and M. Kostic, Cellulose, 26, 5133 (2019).

    Article  CAS  Google Scholar 

  6. C. Dash, A. Das, and D. K. Bisoyi, J. Compos. Mater., 54, 23 (2020).

    Article  Google Scholar 

  7. E. Jayamani, C. P. Tay, M. K. B. Bakri, and A. Kakar, J. Vinyl Addit. Technol., 24, E201 (2018).

    Article  CAS  Google Scholar 

  8. S. Madhavi, N. V. Raju, and J. Johns, Fiber. Polym., 22, 3183 (2021).

    Article  CAS  Google Scholar 

  9. H. B. Bhuvaneswari, D. L. Vinayaka, M. Ilangovan, and N. Reddy, J. Mater. Sci.: Mater. Electron., 28, 12383 (2017).

    CAS  Google Scholar 

  10. J. Wang, C. Wu, R. Liu, and S. Li, Polym. Bull., 71, 1263 (2014).

    Article  CAS  Google Scholar 

  11. T. Gupta, “Copper Interconnect Technology”, SpringerVerlag, New York, 2009.

    Book  Google Scholar 

  12. A. M. Poulose, A. Y. Elnour, A. Anis, H. Shaikh, S. M. Al-Zahrani, J. George, M. I. Al-Wabel, A. R. Usman, Y. S. Ok, D. C. W. Tsang, and A. K. Sarmah, Sci. Total Environ., 619–620, 311 (2018).

    Article  Google Scholar 

  13. S. Sudha and G. Thilagavathi, J. Ind. Text., 47, 1407 (2018).

    Article  CAS  Google Scholar 

  14. S. Nayak and J. R. Mohanty, J. Nat. Fibers, 16, 688 (2019).

    Article  CAS  Google Scholar 

  15. M. Jacob, K. T. Varughese, and S. Thomas, J. Mater. Sci., 41, 5538 (2006).

    Article  CAS  Google Scholar 

  16. A. Paul, K. Joseph, and S. Thomas, Compos. Sci. Technol., 57, 67 (1997).

    Article  CAS  Google Scholar 

  17. P. Li, Y. Tao, and S. Q. Shi, BioResources, 9, 2681 (2014).

    Google Scholar 

  18. P. Satish, M. Daniel Silas Kumar, A. S. Bhanu Prasanna, and C. Dilip Sham Prakash, Materials Today: Proceedings, 28, 1039 (2020).

    CAS  Google Scholar 

  19. M. N. Bora, G. C. Baruah, and C. L. Talukdar, Thermochimica Acta, 218, 435 (1993).

    Article  CAS  Google Scholar 

  20. D. Pathania and D. Singh, IJTAS, 1, 34 (2009).

    Google Scholar 

  21. N. Chand and D. Jain, Compos. Part A: Appl. Sci. Manuf., 36, 5 (2005).

    Article  Google Scholar 

  22. G. M. Tsangaris, G. C. Psarras, and A. J. Kontopoulos, J. Non. Cryst. Solids, 131–133, 1164 (1991).

    Article  Google Scholar 

  23. M. K. B. Bakri, P. L. NyukKhui, M. R. Rahman, S. Hamdan, E. Jayamani, and A. Kakar, “Acacia Wood Biocomposites”, pp.171–186, Springer, Cham, 2019.

    Book  Google Scholar 

  24. D. Mahesh, K. R. Kowshigha, N. V. Raju, and P. K. Aggarwal, J. Indian Acad. Wood Sci., 17, 1 (2020).

    Article  Google Scholar 

Download references

Acknowledgment

The writers (MD & NVR) would like to express their gratitude to the Management and the Principal Global Academy of Technology for their continuing assistance in carrying out this research work. The authors are grateful for providing the laboratory facility to the Director & staff of the Institute of Wood Science and Technology, Bengaluru. The authors express their gratitude to Dr. K G Satyanarayana and Dr. Manjula R for the fruitful discussion regarding the present research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahesh Doddashamachar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doddashamachar, M., Setty, R.N.V., Reddy, M.V.H. et al. Dielectric Properties of Banana Fiber Filled Polypropylene Composites: Effect of Coupling Agent. Fibers Polym 23, 1387–1395 (2022). https://doi.org/10.1007/s12221-022-4395-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-022-4395-6

Keywords

Navigation