Skip to main content
Log in

Color Depth Enhancement and Improved Rubbing Color Fastness of Cotton Knitted Fabrics via Polyurethane with PCL/PCDL Polyester Soft Segment

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Water-based polyurethane (WPU) provides a number of benefits over typical solvent-based polyurethane. WPU is more environmentally friendly, safe, and reliable. The WPU with polycaprolactone diol/polycarbonate diol (PCL/PCDL) complex soft segment was developed using a prepolymer technique to enhance the color depth of cotton knitted fabrics dyed with reactive dyes. The appearance, particle size, zeta potential, and viscosity of WPU emulsions were analyzed. The chemical structure, thermal stability, phase change performance, and topography of WPU films were characterized by Fourier-transform infrared (FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and atomic force microscopy (AFM), respectively. The tensile and hydrophilic properties of the WPU films were examined by an electronic universal testing machine and contact angle goniometer, respectively. The K/S value, rubbing fastness, washing fastness, and wearability of finished and unfinished dark cotton knitted fabrics were measured. Simultaneously, the chemical structure and morphology of fabrics were investigated using FTIR and scanning electron microscopy (SEM). The results show the WPU-2 emulsion demonstrated excellent stability, and the WPU-2 film showed superior thermal stability. The K/S value of the dark cotton knitted fabric finished with WPU-2 emulsion (40 g/l) increased by 18.58 %, and the wet rubbing color fastness of the resulting fabric was enhanced. The SEM results show a layer of film covered the surface of the finished fabric. In summary, the WPU can provide a new technique for enhancing the color depth of fabrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Y. Jiang, Y. Wang, H. Quan, and W. Li, Fiber. Polym., 19, 703 (2018).

    Article  CAS  Google Scholar 

  2. I. Bramhecha and J. Sheikh, Ind. Eng. Chem. Res., 58, 21252 (2019).

    Article  CAS  Google Scholar 

  3. S. Fu, D. Hinks, P. Hauser, and M. Ankeny, Cellulose, 20, 3101 (2013).

    Article  CAS  Google Scholar 

  4. E. Mouxiou, I. Eleftheriadis, N. Nikolaidis, and E. Tsatsaroni, J. Appl. Polym. Sci., 108, 1209 (2008).

    Article  CAS  Google Scholar 

  5. A. Q. Hou and Y. Q. Shi, Mat. Sci. Eng. B-Adv., 163, 99 (2009).

    Article  CAS  Google Scholar 

  6. K. L. Xie, A. Q. Hou, and Y. H. Zhang, J. Appl. Polym. Sci., 100, 720 (2006).

    Article  CAS  Google Scholar 

  7. C. Yu, Y. Lu, and F. Wu, J. Appl. Polym. Sci., 136, 48208 (2019).

    Article  Google Scholar 

  8. H. H. Wang and Y. T. Lin, J. Appl. Polym. Sci., 90, 2045 (2003).

    Article  CAS  Google Scholar 

  9. M. Soyama, Y. Kiuchi, M. Iji, S. Tanaka, and K. Toyama, J. Appl. Polym. Sci., 131, 40366 (2014).

    Article  Google Scholar 

  10. E. Sharmin, F. Zafar, D. Akram, M. Alam, and S. Ahmad, Ind. Crop. Prod., 76, 215 (2015).

    Article  CAS  Google Scholar 

  11. Z. Wu, L. Y. Shen, and L. Zhou, Key Eng. Mater., 492, 525 (2012).

    Article  CAS  Google Scholar 

  12. E. L. Brantley and G. K. Jennings, Macromolecules, 37, 1476 (2004).

    Article  CAS  Google Scholar 

  13. H. Kim and S. Lee, Fiber. Polym., 19, 965 (2018).

    Article  CAS  Google Scholar 

  14. D. S. Cheng, Y. H. Liu, C. W. Yan, Y. Zhou, Z. M. Deng, J. H. Ran, S. G. Bi, S. Y. Li, G. M. Cai, and X. Wang, Cellulose, 28, 6727 (2021).

    Article  CAS  Google Scholar 

  15. H. Zhou, H. X. Wang, H. T. Niu, Y. Zhao, Z. G. Xu, and T. Lin, Adv. Funct. Mater., 27, 1604261 (2017).

    Article  Google Scholar 

  16. W. H. Song, B. Wang, L. H. Fan, F. Q. Ge, and C. X. Wang, Appl. Surf. Sci., 463, 403 (2019).

    Article  CAS  Google Scholar 

  17. S. Y. Kang, Z. X. Ji, L. F. Tseng, S. A. Turner, D. A. Villanueva, R. Johnson, A. Albano, and R. Langer, Adv. Mater., 30, 1706237 (2018).

    Article  Google Scholar 

  18. L. H. Chan-Chan, R. Solis-Correa, R. F. Vargas-Coronado, J. M. Cervantes-Uc, J. V. Cauich-Rodríguez, P. Quintana, and P. Bartolo-Pérez, Acta Biomater., 6, 2035 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. T. Wang, W. Sun, X. Y. Zhang, H. Y. Xu, and F. Xu, Materials, 10, 1247 (2017).

    Article  CAS  PubMed Central  Google Scholar 

  20. Y. Wang, R. Chen, T. Li, P. M. Ma, H. J. Zhang, M. L. Du, M. Q. Chen, and W. F. Dong, Ind. Eng. Chem. Res., 59, 458 (2020).

    Article  CAS  Google Scholar 

  21. S. McCreath, P. Boinard, E. Boinard, P. Gritter, and J. J. Liggat, Int. J. Adhes. Adhes., 86, 84 (2018).

    Article  CAS  Google Scholar 

  22. L. Q. Meng, X. Z. Shi, R. L. Zhang, L. Yan, Z. P. Liang, Y. J. Nie, Z. P. Zhou, and T. F. Hao, J. Appl. Polym. Sci., 137, 49314 (2020).

    Article  CAS  Google Scholar 

  23. S. Rattanapan, P. Pasetto, J. F. Pilard, and V. Tanrattanakul, J. Polym. Res., 23, 182 (2016).

    Article  Google Scholar 

  24. S. Zo, S. Choi, H. Kim, E. Shin, and S. Han, J. Nanosci. Nanotechnol., 20, 5014 (2020).

    Article  PubMed  Google Scholar 

  25. C. H. Dong, X. Wei, and Y. J. Luo, RSC Adv., 8, 42041 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Z. L. Fan, Q. Li, X. B. Cai, and Z. B. Li, J. Text. Inst., 108, 1227 (2016).

    Google Scholar 

  27. C. S. Xu, Z. S. Cai, J. W. Xing, Y. Ren, W. Z. Xu, and W. Z. Shi, Fiber. Polym., 15, 665 (2014).

    Article  CAS  Google Scholar 

  28. C. Alkan, E. Günther, S. Hiebler, Ö. F. Ensari, and D. Kahraman, Sol. Energy, 86, 1761 (2012).

    Article  CAS  Google Scholar 

  29. K. Chen, R. W. Liu, C. Zou, Q. Y. Shao, Y. J. Lan, X. Q. Cai, and L. L. Zhai, Sol. Energy Mater. Sol. Cells, 130, 466 (2014).

    Article  CAS  Google Scholar 

  30. S. A. Oleyaei, Y. Zahedi, B. Ghanbarzadeh, and A. A. Moayedi, Int. J. Biol. Macromol., 89, 256 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. P. Schön, K. Bagdi, K. Molnár, P. Markus, B. Pukánszky, and G. J. Vancso, Eur. Polym. J., 47, 692 (2011).

    Article  Google Scholar 

  32. Y. Han, J. Hu, and Z. Xin, Prog. Org. Coat., 130, 8 (2019).

    Article  CAS  Google Scholar 

  33. Y. T. Han, Z. Chen, W. Dong, and Z. Y. Xin, High Perform. Polym., 27, 824 (2014).

    Article  Google Scholar 

  34. L. Q. Hu, Z. J. Pu, Y. Q. Zhong, L. Z. Liu, J. Cheng, and J. C. Zhong, J. Polym. Res., 27, 129 (2020).

    Article  CAS  Google Scholar 

  35. B. Ghanbarzadeh, M. Musavi, A. Oromiehie, K. Rezayi, E. R. Rad, and J. Milani, LWT-Food Sci. Tech., 40, 1191 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Postgraduate Innovation Fund Project of Xi’an Polytechnic University (No. chx2021005) and the Scientific Research Program Funded by Shaanxi Provincial Education Department (No. 21JY014). This study was also supported by the ShaoxingKeqiao West-Tex Textile Industry Innovation Institute (No. 19KQZD11) and the Key Laboratory Project of Shaanxi Provincial Department of Education (No. 20JS050).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaofeng Lu.

Ethics declarations

There are no conflicts to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, Y., Lu, S., Shi, W. et al. Color Depth Enhancement and Improved Rubbing Color Fastness of Cotton Knitted Fabrics via Polyurethane with PCL/PCDL Polyester Soft Segment. Fibers Polym 23, 2638–2647 (2022). https://doi.org/10.1007/s12221-022-4388-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-022-4388-5

Keywords

Navigation