Skip to main content
Log in

Curcumin-loaded Polycaprolactone/Collagen Composite Fibers as Potential Antibacterial Wound Dressing

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The development of wound dressings with therapeutical benefits is of great importance in skin tissue engineering applications, adding bioactive molecules into biomaterials is a strategy to achieve a better biological response. In this study, four different concentrations of curcumin (CUR; 5, 10, 15 and 20 by weight in relation to the PCL content) were incorporated into solutions composed of polycaprolactone (PCL) and collagen (COL) for the manufacture of electrospun fibers. The PCL-COL-CUR fibers were physicochemically characterized in terms of their morphology, wettability, degradation rate, mechanical behavior, and cumulative curcumin release. The in vitro biological properties of the composite membranes were also evaluated. The results indicated that the membranes have diameters on average of approximately 200 nm. The water uptake was adequate for exudates remotion in a wound, and the degradation rate of the fibers was highly appropriate to achieve complete skin tissue regeneration. The addition of CUR to composite membranes produced a significant increase in the mechanical properties which indicate a satisfactory clinical handling. The incorporation of CUR produced a significant decrease in the planktonic growth of S. aureus over time, however, the antibacterial effect against E. coli was limited, the presence of CUR did not cause the inhibition of its growth. Finally, the viability of human dermal fibroblasts seeded on the top of the membranes indicated the cytotoxic dosage effect of CUR, the two highest CUR concentrations produced a significant loss of cell viability. Overall, our results suggested that the CUR-loaded PCL-COL composite membranes are promising candidates for use as antibacterial dressings to enhance clinical wound management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Krishnan and S. Thomas, Polym. Adv. Technol., 30, 823 (2019).

    Article  Google Scholar 

  2. M. Hajialyani, D. Tewari, E. Sobarzo-Sánchez, S. M. Nabavi, M. H. Farzaei, and M. Abdollahi, Int. J. Nanomedicine, 13, 5023 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. A. Gaspar-Pintiliescu, A. M. Stanciuc, and O. Craciunescu, Int. J. Biol. Macromol., 138, 854 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. X. Gao, Z. Xu, G. Liu, and J. Wu, Acta Biomater., 119, 57 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. I. Guimarães, S. Baptista-Silva, M. Pintado, and A. L. Oliveira, Appl. Sci., 11, 1230 (2021).

    Article  Google Scholar 

  6. Y. Zhao and Z. Sun, Int. J. Food Prop., 20, S2822 (2018).

    Article  Google Scholar 

  7. R. R. Reddy, B. V. N. Phani Kumar, G. Shanmugam, B. Madhan, and A. B. Mandal, J. Phys. Chem. B, 119, 14076 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. M. M. Mahmud, S. Zaman, A. Perveen, R. A. Jahan, M. F. Islam, and M. T. Arafat, J. Drug Deliv. Sci. Technol., 55, 101386 (2020).

    Article  CAS  Google Scholar 

  9. N. Ahangari, S. Kargozar, M. Ghayour-Mobarhan, F. Baino, A. Pasdar, A. Sahebkar, G. A. A. Ferns, H. W. Kim, and M. Mozafari, BioFactors, 45, 135 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. J. K. Trigo-Gutierrez, Y. Vega-Chacón, A. B. Soares, and E. G. de O. Mima, Int. J. Mol. Sci., 22, 7130 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. M. Ilangovan, V. Guna, C. Hu, G. S. Nagananda, and N. Reddy, Ind. Crops Prod., 112, 556 (2018).

    Article  CAS  Google Scholar 

  12. Y. Fan, J. Yi, Y. Zhang, and W. Yokoyama, Food Chem., 239, 1210 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. R. Meng, Z. Wu, Q. T. Xie, J. S. Cheng, and B. Zhang, Food Chem., 340, 127893 (2021).

    Article  CAS  PubMed  Google Scholar 

  14. I. Nakamae, T. Morimoto, H. Shima, M. Shionyu, H. Fujiki, N. Yoneda-Kato, T. Yokoyama, S. Kanaya, K. Kakiuchi, T. Shirai, E. Meiyanto, and J. Y. Kato, Molecules, 24, 1 (2019).

    Article  Google Scholar 

  15. Y. A. Larasati, N. Yoneda-Kato, I. Nakamae, T. Yokoyama, E. Meiyanto, and J. Y. Kato, Sci. Rep., 8, 1 (2018).

    Article  CAS  Google Scholar 

  16. N. Fereydouni, M. Darroudi, J. Movaffagh, A. Shahroodi, A. E. Butler, S. Ganjali, and A. Sahebkar, J. Cell. Physiol., 234, 5537 (2019).

    Article  CAS  PubMed  Google Scholar 

  17. E. Blanco-García, F. J. Otero-Espinar, J. Blanco-Méndez, J. M. Leiro-Vidal, and A. Luzardo-Álvarez, Int. J. Pharm., 518, 86 (2017).

    Article  PubMed  Google Scholar 

  18. T. Esatbeyoglu, K. Ulbrich, C. Rehberg, S. Rohn, and G. Rimbach, Food Funct., 6, 887 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. B. Joe, M. Vijaykumar, and B. R. Lokesh, Crit. Rev. Food Sci. Nutr., 44, 97 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. R. CR, S. PS, O. Manaf, S. PP, and A. Sujith, Int. J. Biol. Macromol., 108, 1261 (2018).

    Article  CAS  PubMed  Google Scholar 

  21. I. Sebe, P. Szabó, B. Kállai-Szabó, and R. Zelkó, Int. J. Pharm., 494, 516 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. S. M. Espinoza, H. I. Patil, E. San Martin Martinez, R. Casañas Pimentel, and P. P. Ige, Int. J. Polym. Mater. Polym. Biomater., 69, 85 (2020).

    Article  CAS  Google Scholar 

  23. J. Dulnik, D. Kołbuk, P. Denis, and P. Sajkiewicz, Eur. Polym. J., 104, 147 (2018).

    Article  CAS  Google Scholar 

  24. S. R. Gomes, G. Rodrigues, G. G. Martins, M. A. Roberto, M. Mafra, C. M. R. Henriques, and J. C. Silva, Mater. Sci. Eng. C, 46, 348 (2015).

    Article  CAS  Google Scholar 

  25. A. Hernández-Rangel and E. S. Martin-Martinez, J. Biomed. Mater. Res. Part A, 109, 1751 (2021).

    Article  Google Scholar 

  26. E. J. Chong, T. T. Phan, I. J. Lim, Y. Z. Zhang, B. H. Bay, S. Ramakrishna, and C. T. Lim, Acta Biomater., 3, 321 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. K. S. Silvipriya, K. Krishna Kumar, B. Dinesh Kumar, A. John, and P. Lakshmanan, Curr. Trends Biotechnol. Pharm., 10, 374 (2016).

    CAS  Google Scholar 

  28. Q. Zhang, S. Lv, J. Lu, S. Jiang, and L. Lin, Int. J. Biol. Macromol., 76, 94 (2015).

    Article  CAS  PubMed  Google Scholar 

  29. C. Bi, X. Li, Q. Xin, W. Han, C. Shi, R. Guo, W. Shi, R. Qiao, X. Wang, and J. Zhong, J. Biosci. Bioeng., 128, 234 (2019).

    Article  CAS  PubMed  Google Scholar 

  30. Q. Li, L. Mu, F. Zhang, Y. Sun, Q. Chen, C. Xie, and H. Wang, Mater. Sci. Eng. C, 80, 346 (2017).

    Article  CAS  Google Scholar 

  31. T. Zhou, N. Wang, Y. Xue, T. Ding, X. Liu, X. Mo, and J. Sun, Colloids Surfaces B Biointerfaces, 143, 415 (2016).

    Article  CAS  PubMed  Google Scholar 

  32. A. Afifah, O. Suparno, L. Haditjaroko, and K. Tarman, IOP Conf. Ser. Earth Environ. Sci., 335, 012031 (2019).

    Article  Google Scholar 

  33. M. Ghorbani, P. Nezhad-Mokhtari, and S. Ramazani, Int. J. Biol. Macromol., 153, 921 (2020).

    Article  CAS  PubMed  Google Scholar 

  34. Y. E. Aguirre-Chagala, V. Altuzar, E. León-Sarabia, J. C. Tinoco-Magaña, J. M. Yañez-Limón, and C. Mendoza-Barrera, Mater. Sci. Eng. C, 76, 897 (2017).

    Article  CAS  Google Scholar 

  35. M. Fallah, S. H. Bahrami, and M. Ranjbar-Mohammadi, J. Ind. Text., 46, 562 (2016).

    Article  CAS  Google Scholar 

  36. H. T. Bui, O. H. Chung, J. Dela Cruz, and J. S. Park, Macromol. Res., 22, 1288 (2014).

    Article  CAS  Google Scholar 

  37. S. M. Saeed, H. Mirzadeh, M. Zandi, and J. Barzin, Prog. Biomater., 6, 39 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. P. Kittiphattanabawon, S. Benjakul, W. Visessanguan, T. Nagai, and M. Tanaka, Food Chem., 89, 363 (2005).

    Article  CAS  Google Scholar 

  39. D. Liu, L. Liang, J. M. Regenstein, and P. Zhou, Food Chem., 133, 1441 (2012).

    Article  CAS  Google Scholar 

  40. M. Ahmad and S. Benjakul, Food Chem., 120, 817 (2010).

    Article  CAS  Google Scholar 

  41. M. S. Heu, J. H. Lee, H. J. Kim, S. J. Jee, J. S. Lee, Y.-J. Jeon, F. Shahidi, and J.-S. Kim, Food Sci. Biotechnol., 19, 27 (2010).

    Article  CAS  Google Scholar 

  42. G. Prado-Prone, P. Silva-Bermudez, M. Bazzar, M. L. Focarete, S. E. Rodil, X. Vidal-Gutiérrez, J. A. García-Macedo, V. I. García-Pérez, C. Velasquillo, and A. Almaguer-Flores, Biomed. Mater., 15, 035006 (2020).

    Article  CAS  PubMed  Google Scholar 

  43. X. Z. Sun, G. R. Williams, X. X. Hou, and L. M. Zhu, Carbohydr. Polym., 94, 147 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. M. Zahiri, M. Khanmohammadi, A. Goodarzi, S. Ababzadeh, M. Sagharjoghi Farahani, S. Mohandesnezhad, N. Bahrami, I. Nabipour, and J. Ai, Int. J. Biol. Macromol., 153, 1241 (2020).

    Article  CAS  PubMed  Google Scholar 

  45. C. Bi, X. Li, Q. Xin, W. Han, C. Shi, R. Guo, W. Shi, R. Qiao, X. Wang, and J. Zhong, J. Biosci. Bioeng., 128, 234 (2019).

    Article  CAS  PubMed  Google Scholar 

  46. G. Dharunya, N. Duraipandy, R. Lakra, P. S. Korapatti, R. Jayavel, and M. S. Kiran, Biomed. Mater., 11, 045011 (2016).

    Article  CAS  PubMed  Google Scholar 

  47. N. N. Fathima, R. S. Devi, K. B. Rekha, and A. Dhathathreyan, J. Chem. Sci., 121, 509 (2009).

    Article  Google Scholar 

  48. M. E. Plonska-Brzezinska, D. M. Bobrowska, A. Sharma, P. Rodziewicz, M. Tomczyk, J. Czyrko, and K. Brzezinski, RSC Adv., 5, 95443 (2015).

    Article  CAS  Google Scholar 

  49. Y. Arima and H. Iwata, Biomaterials, 28, 3074 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. M. Ranjbar-Mohammadi and S. H. Bahrami, Int. J. Biol. Macromol., 84, 448 (2016).

    Article  CAS  PubMed  Google Scholar 

  51. W. Cui, X. Zhu, Y. Yang, X. Li, and Y. Jin, Mater. Sci. Eng. C, 29, 1869 (2009).

    Article  CAS  Google Scholar 

  52. Y. Yang, X. Zhu, W. Cui, X. Li, and Y. Jin, Macromol. Mater. Eng., 294, 611 (2009).

    Article  CAS  Google Scholar 

  53. Y. E. Bulbul, M. Okur, F. Demirtas-Korkmaz, and N. Dilsiz, Appl. Clay Sci., 186, 105430 (2020).

    Article  CAS  Google Scholar 

  54. A. Shababdoust, M. Zandi, M. Ehsani, P. Shokrollahi, and R. Foudazi, Int. J. Pharm., 575, 118947 (2020).

    Article  CAS  PubMed  Google Scholar 

  55. A. Sadeghianmaryan, Z. Yazdanpanah, Y. A. Soltani, H. A. Sardroud, M. H. Nasirtabrizi, and X. Chen, J. Biomater. Sci. Polym. Ed., 31, 169 (2020).

    Article  CAS  PubMed  Google Scholar 

  56. G. I. Fakhrullina, F. S. Akhatova, Y. M. Lvov, and R. F. Fakhrullin, Environ. Sci. Nano, 2, 54 (2015).

    Article  CAS  Google Scholar 

  57. Bhawana, R. K. Basniwal, H. S. Buttar, V. K. Jain, and N. Jain, J. Agric. Food Chem., 59, 2056 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. D. Zheng, C. Huang, H. Huang, Y. Zhao, M. R. U. Khan, H. Zhao, and L. Huang, Chem. Biodivers., 17, e2000171 (2020).

    Article  CAS  PubMed  Google Scholar 

  59. M. Saadipour, A. Karkhaneh, and M. Haghbin Nazarpak, Int. J. Polym. Mater. Polym. Biomater., 71, 386 (2022).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

A. Hernández Rangel gratefully acknowledges the post-doctoral fellowship provided by the CONACyT México.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Hernández-Rangel.

Ethics declarations

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

San Martín-Martínez, E., Casañas-Pimentel, R., Almaguer-Flores, A. et al. Curcumin-loaded Polycaprolactone/Collagen Composite Fibers as Potential Antibacterial Wound Dressing. Fibers Polym 23, 3002–3011 (2022). https://doi.org/10.1007/s12221-022-4275-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-022-4275-0

Keywords

Navigation