Skip to main content
Log in

Thermo-physiological Comfort Performance of Recycled Plain Knitted Fabrics Produced from Acrylic Waste Fiber with the Effects of Incorporated Covered and PBT Elastic Yarns

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The objective of this work is to evaluate the thermo-physiological comfort performance properties of the recycled acrylic plain knitted fabrics produced from recycled open end yarn including acrylic waste fiber in comparison with those of equivalent virgin acrylic counterparts, considering the effects of incorporated covered and PBT elastic yarns. Acrylic fiber is characterized by possessing wool-like handle and thermal comfort characteristics, which makes acrylic waste fiber good candidate for sweater-like knitted fabric applications worn in cold weather conditions. Covered polyester/lycra and PBT elastic yarns are included into the study to give added value to the recycled fabrics. Comparing the thermo-physiological properties of the recycled and virgin acrylic fabrics, it is observed that in the recycled acrylic fabrics, thermal conductivity and thermal absorptivity are found to be lower, whereas thermal resistance is higher. These thermal values make recycled acrylic fabrics appropriate for cold weather. Regarding to elastic yarn state, the addition of either the covered yarn or the PBT yarn leads to increase in the thermal conductivity, thermal resistance and thermal absorptivity properties and the covered yarn tends to affect the thermal parameters more than the PBT yarn. The lowest air permeability and water vapor permeability results are achieved for the fabrics with the covered yarn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. G. Frushour and R. S. Knorr in “Handbook of Fiber Chemistry” (M. Lewin Ed.), Vol. 12, pp.811–973, CRC Press Taylor & Francis Group, Boca Raton, 2007.

  2. R. R. Mather and R. H. Wardman, “The Chemistry of Textile Fibres”, pp.193–196, Royal Society of Chemistry, Cambridge, 2015.

    Google Scholar 

  3. S. S. Muthu, Y. Li, J. Y. Hu, and P. Y. Mok, Ecol. Indic., 13, 66 (2012).

    Article  CAS  Google Scholar 

  4. M. T. Halimi, M. B. Hassen, B. Azzouz, and F. Sakli, J. Text. Inst., 98, 437 (2007).

    Article  Google Scholar 

  5. H. Hasani, D. Semnani, and S. Tabatabaei, Ind. Textila, 61, 259 (2010).

    Google Scholar 

  6. D. Yilmaz, S. Yelkovan, and Y. Tirak, Fibres Text. East. Eur., 25, 19 (2017).

    Article  Google Scholar 

  7. D. Awgichew, S. Sakthivel, E. Solomon, A. Bayu, R. Legese, D. Asfaw, M. Bogale, A. Aduna, and S. S. Kumar, Adv. Mater. Sci. Eng., 2021, 4334632 (2021).

    Article  Google Scholar 

  8. A. D. Gun and E. Oner, J. Text. Inst., 110, 1569 (2019).

    Article  Google Scholar 

  9. O. K. Necef, N. Seventekin, and M. Pamuk, Tekst. Konfeksiyon, 23, 286 (2013).

    Google Scholar 

  10. A. B. Marmarali, Text. Res. J., 73, 11 (2003).

    Article  CAS  Google Scholar 

  11. C. N. Herath and B. C. Kang, Text. Res. J., 78, 209 (2008).

    Article  CAS  Google Scholar 

  12. P. Venkatraman in “Materials and Technology for Sportswear and Performance Apparel” (S. G Hayes and P. Venkatraman Eds.), Vol. 2, pp.23–52, CRC Press Taylor & Francis Group, Boca Raton, 2016.

  13. J. Hu, J. Lu, and Y. Zhu, Polym. Rev., 48, 275 (2008).

    Article  CAS  Google Scholar 

  14. D. Strukelj and K. Dimitrovski, Tekstil, 61, 18 (2012).

    CAS  Google Scholar 

  15. H. Kadoglu, K. Dimitrovski, A. Marmarali, P. Celik, G. B. Bayraktar, T. B. Ute, G. Ertekin, A. Demsar, and K. Kostanjek, Autex Res. J., 16, 109 (2016).

    Article  CAS  Google Scholar 

  16. A. D. Gun, H. N. Akturk, A. S. Macit, and G. Alan, J. Text. Inst., 105, 1108 (2014).

    Article  Google Scholar 

  17. A. D. Gun, G. Alan, and A. S. Macit, J. Text. Inst., 107, 1112 (2016).

    Article  CAS  Google Scholar 

  18. A. D. Gun and E. S. Yigit, J. Test. Eval., 50, 378 (2022).

    Article  Google Scholar 

  19. A. D. Gun and C. N. Kuyucak, Fiber. Polym., 23, 282 (2022).

    Article  CAS  Google Scholar 

  20. S. A. H. Ravandi and M. Valizadeh in “Improving Comfort in Clothing” (G. Song Ed.), Vol. 2, pp.61–78. Woodhead Publishing, Cambridge, 2011.

  21. K. Amutha, “A Practical Guide to Textile Testing”, pp.86–88, Woodhead Publishing, New Delhi, 2016.

    Book  Google Scholar 

  22. H. N. Yoon and A. Buckley, Text. Res. J., 54, 289 (1984).

    Article  CAS  Google Scholar 

  23. A. P. Cuden and U. S. Elesini, Acta Chim. Slov., 57, 957 (2010).

    CAS  Google Scholar 

  24. B. V. Holcombe and B. N. Hoschke, Text. Res. J., 53, 368 (1983).

    Article  Google Scholar 

  25. R. S. Rengasamy, B. R. Das, and Y. B. Patil, J. Text. Inst., 100, 507 (2009).

    Article  Google Scholar 

  26. M. Hassan, K. Qashqary, H. A. Hassan, E. Shady, and M. Alansary, Fibres Text. East. Eur., 20, 82 (2012).

    Google Scholar 

  27. G. Ertekin, N. Oglakcioglu, and A. Marmarali, Tekst. Muhendis, 110, 146 (2018).

    Article  Google Scholar 

  28. L. Hes, M. Araujo, and V. V. Djulay, Text. Res. J., 66, 245 (1996).

    Article  CAS  Google Scholar 

  29. A. Marmarali, N. Ozdil, and S. D. Kretzschmar, Teks. Konfeksiyon, 3, 178 (2007).

    Google Scholar 

  30. N. Oglakcioglu and A. Marmarali, Fibres Text. East. Eur., 15, 94 (2007).

    CAS  Google Scholar 

  31. R. L. Barker, Int. J. Cloth. Sci. Tech., 14, 181 (2002).

    Article  Google Scholar 

  32. M. J. Pac, M. A. Bueno, M. Renner, and S. E. Kasmi, Text. Res. J., 71, 806 (2001).

    Article  CAS  Google Scholar 

  33. A. Majumdar in “Technical Textile Yarns-Industrial and Medical Applications” (R. Alagirusamy and A. Das Eds.), Vol. 4, pp.112–139, Woodhead Publishing, Cambridge, 2010).

  34. N. Kizildag, N. Ucar, and B. Gorgun, J. Text. Inst., 107, 606 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Research Fund of Usak University (Project Number: 2018/TP022). The support is gratefully acknowledged.

Authors would like to thank Kandemiroglu, Akcay, Selcuk and Bello textile companies for providing support to produce yarns and the fabrics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahu Demiroz Gun.

Ethics declarations

The authors declared no potential conflicts of interest with respect to the research, authorship and/or publication of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gun, A.D., Kuyucak, C.N. Thermo-physiological Comfort Performance of Recycled Plain Knitted Fabrics Produced from Acrylic Waste Fiber with the Effects of Incorporated Covered and PBT Elastic Yarns. Fibers Polym 23, 2762–2771 (2022). https://doi.org/10.1007/s12221-022-4231-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-022-4231-z

Keywords

Navigation