Skip to main content
Log in

A Finite Element Based Progressive Failure Analysis of Carbon Nanotubes/Polymer/Fiber Reinforced Laminated Composite Tapered Panels

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

This paper presents the progressive failure analysis of carbon nano tubes/polymer/fiber reinforced laminated curved composite panels under transverse pressure load distributed over the panel surface for various taper configurations. The ply-by-ply stresses were computed using the finite element method with displacement fields derived based on higher order shear deformation theory (HSDT). The first ply failure was predicted based on Tsai-Wu failure criterion, and the stiffness degradation method were employed to track post-failure behavior and failure progression. The verification of the current method is performed by comparing the results of the FE analysis with the numerical results available in literature and experimental tests. Finally, various parametric analysis were performed to investigate the influence of MWCNTs concentration, taper configurations and curved geometries on the failure characteristics. It was noticed that the failure resistance of the panel significantly enhanced with the addition of CNT filler, regardless of the considered taper configurations. It was also noticed that the hyperbolic and cylindrical geometries have the highest and lowest overall stiffness and strength. It was observed that the taper configuration TC-3 results a higher LPF load among the other taper configurations for all the considered curved geometries. Finally, the present work could be used as a guide to study the failure characteristics of CNT reinforced laminated tapered curved composite panels, which finds many application in finds many applications in windmill, turbine and helicopter blades.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Akhras and W. C. Li, Compos. Struct., 79, 34 (2007).

    Article  Google Scholar 

  2. R. Ganesan, Compos. Struct., 82, 159 (2008).

    Article  Google Scholar 

  3. M. Teotia and R. K. Soni, Eng. Fail. Anal., 94, 412 (2018).

    Article  CAS  Google Scholar 

  4. J. N. Reddy and A. K. Pandey, Comput. Struct., 25, 371 (1987).

    Article  Google Scholar 

  5. S. Tolson and N. Zabaras, Comput. Struct., 38, 361 (1991).

    Article  Google Scholar 

  6. Y. S. N. Reddy, C. M. D. Moorthy, and J. N. Reddy, Int. J. Non. Linear. Mech., 30, 629 (1995).

    Article  Google Scholar 

  7. A. J. Vizzini and S. W. Lee, J. Am. Helicopter Soc., 40, 43 (1995).

    Article  Google Scholar 

  8. T.-Y. Kam, H. F. Sher, T. N. Chao, and R. R. Chang, Int. J. Solids Struct., 33, 375 (1996).

    Article  Google Scholar 

  9. B. G. Prusty, S. K. Satsangi, and C. Ray, J. Reinf. Plast. Compos., 20, 671 (2001).

    Article  CAS  Google Scholar 

  10. R. Ganesan and D. Zhang, Sci. Eng. Compos. Mater., 11, 79 (2004).

    Article  Google Scholar 

  11. P. F. Liu and J. Y. Zheng, Mater. Des., 31, 3825 (2010).

    Article  CAS  Google Scholar 

  12. M. Romanowicz, Int. J. Solids Struct., 51, 2549 (2014).

    Article  Google Scholar 

  13. K. Bakshi and D. Chakravorty, Thin-Walled Struct., 76, 1 (2014).

    Article  Google Scholar 

  14. C.-S. Lee, J.-H. Kim, S. Kim, D.-M. Ryu, and J.-M. Lee, Compos. Struct., 121, 406 (2015).

    Article  Google Scholar 

  15. A. M. Gadade, A. Lal, and B. N. Singh, Mech. Adv. Mater. Struct., 23, 739 (2016).

    Article  Google Scholar 

  16. Y. Yang, X. Liu, Y.-Q. Wang, H. Gao, R. Li, and Y. Bao, Compos. Sci. Technol., 151, 85 (2017).

    Article  CAS  Google Scholar 

  17. A. Kumar, Structures, 14, 95 (2018).

    Article  Google Scholar 

  18. M. Fakoor and S. M. N. Ghoreishi, Polym. Test., 70, 533 (2018).

    Article  CAS  Google Scholar 

  19. D. Biswas and C. Ray, Int. J. Mech. Sci., 161, 105057 (2019).

    Article  Google Scholar 

  20. R. Joshi, P. Pal, and S. K. Duggal, Eur. J. Mech., 81, 103964 (2020).

    Article  Google Scholar 

  21. S. A. M. Ghannadpour and N. Abdollahzadeh, Int. J. Non. Linear. Mech., 121, 103292 (2020).

    Article  Google Scholar 

  22. P. Rozylo, M. Ferdynus, H. Debski, and S. Samborski, Materials (Basel), 13, 1138 (2020).

    Article  CAS  Google Scholar 

  23. K. Choi, Y. Hwang, H. Kim, and H. Kim, Compos. Struct., 224, 110990 (2019).

    Article  Google Scholar 

  24. K. Jin, H. Wang, J. Tao, and D. Du, Compos. Part A, 124, 105490 (2019).

    Article  CAS  Google Scholar 

  25. S. Lin, L. Yang, H. Xu, X. Jia, X. Yang, and L. Zu, Compos. Struct., 255, 113046 (2021).

    Article  Google Scholar 

  26. L. Wan, Y. Ismail, Y. Sheng, K. Wu, and D. Yang, J. Compos. Mater., 55, 1091 (2021).

    Article  CAS  Google Scholar 

  27. X. S. Sun, V. B. C. Tan, and T. E. Tay, Comput. Struct., 89, 1103 (2011).

    Article  Google Scholar 

  28. J. Gu, K. Li, and L. Su, Mater., 12, 3292 (2019).

    Article  CAS  Google Scholar 

  29. J. Galos, Compos. Struct., 236, 111920 (2020).

    Article  Google Scholar 

  30. P. K. Bajpai and I. Singh, “Reinforced Polymer Composites: Processing, Characterization and Post Life Cycle Assessment”, John Wiley & Sons, 2019.

  31. K. Stamoulis, S. K. Georgantzinos, and G. I. Giannopoulos, Int. J. Struct. Integr., 11, 670 (2019).

    Article  Google Scholar 

  32. S. K. Georgantzinos, Nanotechnology, 10, 10 (2019).

    Google Scholar 

  33. J. Wuite and S. Adali, Compos. Struct., 71, 388 (2005).

    Article  Google Scholar 

  34. S. J. Mehrabadi and B. S. Aragh, Thin-Walled Struct., 80, 130 (2014).

    Article  Google Scholar 

  35. P. Kumar and J. Srinivas, Compos. Struct., 177, 158 (2017).

    Article  Google Scholar 

  36. K. Mehar and S. K. Panda, Adv. Polym. Technol., 37, 1643 (2018).

    Article  CAS  Google Scholar 

  37. J. N. Reddy and C. F. Liu, Int. J. Eng. Sci., 23, 319 (1985).

    Article  Google Scholar 

  38. M. S. Qatu, Appl. Acoust., 44, 215 (1995).

    Article  Google Scholar 

  39. A. Bhimaraddi, Int. J. Solids Struct., 27, 897 (1991).

    Article  Google Scholar 

  40. A. B. Arumugam and V. Rajamohan, Iran. J. Sci. Technol. Trans. Mech. Eng., 43, 155 (2019).

    Article  Google Scholar 

  41. S. Goswami and W. Becker, J. Compos. Mater., 50, 201 (2015).

    Article  Google Scholar 

  42. M. R. Garnich and V. M. K. Akula, Appl. Mech. Rev., 62, 1 (2009).

    Article  Google Scholar 

  43. Y. S. N. Reddy and J. N. Reddy, Compos. Sci. Technol., 44, 227 (1992).

    Article  Google Scholar 

  44. M. K. Kassa and A. B. Arumugam, Polym. Compos., 41, 3322 (2020).

    Article  CAS  Google Scholar 

  45. M. K. Kassa, A. B. Arumugam, and T. Rana, Mater. Today Proc., 26, 944 (2020).

    Article  CAS  Google Scholar 

  46. M. Kim, F. A. Mirza, and J. I. Song, WIT Trans. Built Environ., 112, 279 (2010).

    Article  CAS  Google Scholar 

  47. V. Lupăşteanu, N. Ţăranu, and S. Popoaei, Bull. Polytech. Inst. Jassy, 63, 83 (2013).

    Google Scholar 

  48. M. Cho and J.-Y. Yoon, Compos. Struct., 40, 115 (1997).

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Science and Engineering Research Board (SERB), India for providing financial support through a funded project under Early Career Research Award, Grant No: ECR/2018/000827 to carry out this computational work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ananda Babu Arumugam.

Additional information

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kassa, M.K., Selvaraj, R. & Arumugam, A.B. A Finite Element Based Progressive Failure Analysis of Carbon Nanotubes/Polymer/Fiber Reinforced Laminated Composite Tapered Panels. Fibers Polym 23, 3552–3568 (2022). https://doi.org/10.1007/s12221-022-4072-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-022-4072-9

Keywords

Navigation