Skip to main content
Log in

Transverse Tensile Deformation and Failure of Three-dimensional Five-directional Braided Carbon Fiber Composites

  • Regular Articles
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Accurate characterisation of transverse tensile deformation and damage evolution is of importance for evaluating the failure behaviors of three-dimensional (3D) braided composites. In the present study, a finite element method (FEM) and several non-destructive testing methods including acoustic emission, digital image correlation, and infrared thermography are developed to investigate the transverse tensile deformation and damage evolution of 3D five-directional braided composites. In the finite element approach, a matrix-impregnated fiber bundles (MIFB) model and a representative volume cell (RVC) model, which take into account the fiber bundles and matrix, are respectively established to predict the effective mechanical properties of fiber bundles and simulate the deformation and progressive damage of such composites. The damaged locations and the failure modes including matrix crack, fiber debonding and shear fracture of fiber are predicted and verified by experimental tests. The non-destructive tests show that the transverse tensile fracture process can be divided into four stages which correspond to acoustic emission signals severally. The combination of the FEM based numerical modeling and multiple non-destructive characterisation methods can accurately monitor the deformation and damage behaviors of 3D braided composites under transverse tensile loads and thus provide a reference for structural health monitoring of composites in practical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Sun, Y. Wang, G. Zhou, and X. Wang, Polym. Compos., 39, 1076 (2018).

    Google Scholar 

  2. Z. Tian, Y. Yan, J. Li, Y. Hong, and F. Guo, Compos. Struct., 185, 496 (2018).

    Google Scholar 

  3. G. Balokas, S. Czichon, and R. Rolfes, Compos. Struct., 183, 550 (2018).

    Google Scholar 

  4. D. Zhang, L. Chen, Y. Sun, Y. Zhang, and K. Qian, Appl. Compos. Mater., 24, 1233 (2017).

    Google Scholar 

  5. C. Zhang, J. Curiel-Sosa and T. Bui, Appl. Compos. Mater., 26, 139 (2019).

    Google Scholar 

  6. D. Zhang, S. Yu, G. Feng, X. Xiao, Q. Ma, and K. Qian, Appl. Compos. Mater., 25, 1133 (2018).

    Google Scholar 

  7. C. Zhang, C. Mao, J. Curiel-Sosa, and T. Bui, Appl. Compos. Mater., 25, 823 (2018).

    Google Scholar 

  8. J. Li, P. Liu, and J. Chu, J. Fail. Accid. Anal. Prev., 19, 147 (2019).

    Google Scholar 

  9. S. Li, L. Liu, J. Yan, and J. Yu, J. Reinf. Plast. Compos., 33, 775 (2014).

    Google Scholar 

  10. D. Zhang, Y. Sun, X. Wang, and L. Chen, J. Reinf. Plast. Compos., 34, 1989 (2015).

    Google Scholar 

  11. J. Ge, C. He, J. Liang, Y. Chen, and D. Fang, Compos. Sci. Technol., 157, 86 (2018).

    Google Scholar 

  12. D. Zhang, L. Chen, Y. Sun, and X. Wang, J. Reinf. Plast. Compos., 34, 1202 (2015).

    Google Scholar 

  13. W. Zhang, B. Gu, and B. Sun, J. Compos. Mater., 50, 3961 (2016).

    Google Scholar 

  14. X. Niu, Z. Sun, and Y. Song, Appl. Compos. Mater., 25, 1001 (2018).

    Google Scholar 

  15. P. Liu and X. Li, Compos. Struct., 192, 131 (2018).

    Google Scholar 

  16. Z. Zhao, P. Liu, C. Chen, C. Zhang, and Y. Li, Compos. Sci. Technol., 172, 96 (2019).

    Google Scholar 

  17. W. Zhou, R. Liu, Z. Lv, W. Chen, and X. Li, J. Reinf. Plast. Compos., 34, 84 (2015).

    Google Scholar 

  18. M. Haile, N. Bordick, and J. Riddick, Struct. Health Monit., 17, 624 (2018).

    Google Scholar 

  19. P. Zhang, W. Zhou, H. Yin, and J. Shang, Compos. Struct., 226, 111196 (2019).

    Google Scholar 

  20. W. Roundi, A. El Mahi, A. El Gharad, and J. Rebiere, Appl. Acoust., 132, 124 (2018).

    Google Scholar 

  21. D. Aggelis, N. Barkoula, T. Matikas, and A. Paipetis, Appl. Compos. Mater., 20, 489 (2013).

    Google Scholar 

  22. F. Lissek, A. Haeger, V. Knoblauch, S. Hloch, F. Pude, and M. Kaufeld, Compos. Part B-Eng., 136, 55 (2018).

    Google Scholar 

  23. X. Yao, L. Meng, J. Jin, and H. Yeh, Polym. Test., 24, 245 (2005).

    Google Scholar 

  24. F. Lagattu, J. Brillaud, and M. Lafarie-Frenot, Mater. Charact., 53, 17 (2004).

    Google Scholar 

  25. N. Kolanu, S. Prakash, and M. Ramji, Ocean Eng., 114, 290 (2016).

    Google Scholar 

  26. H. Liu, S. Xie, C. Pei, J. Qiu, Y. Li, and Z. Chen, IEEE T Ind. Inform., 14, 5544 (2018).

    Google Scholar 

  27. X. Liu, Y. Ma, and X. Yao, J. Strain Anal. Eng. Des., 48, 474 (2013).

    Google Scholar 

  28. M. Saeedifar, M. Najafabadi, K. Mohammadi, M. Fotouhi, H. Toudeshky, and R. Mohammadi, J. Nondestruct. Eval., 37, 1 (2018).

    Google Scholar 

  29. S. Yan, L. Guo, J. Zhao, X. Lu, T. Zeng, Y. Guo, and L. Jiang, Strength Mater., 49, 198 (2017).

    Google Scholar 

  30. Y. Yang, L. Zhang, L. Guo, W. Zhang, J. Zhao, and W. Xie, Compos. Struct., 206, 578 (2018).

    Google Scholar 

  31. W. Zhou, W. Zhao, Y. Zhang, and Z. Ding, Compos. Struct., 195, 349 (2018).

    Google Scholar 

  32. V. Munoz, B. Vales, M. Perrin, M. Pastor, H. Welemane, A. Cantarel, and M. Karama, Compos. Part B-Eng., 85, 68 (2016).

    Google Scholar 

  33. D. Li, H. Duan, and L. Jiang, Fiber Polym., 20, 642 (2019).

    Google Scholar 

  34. D. Zhang, L. Chen, Y. Sun, X. Wang, Y. Zhang, and C. Fu, J. Compos. Mater., 50, 3345 (2016).

    Google Scholar 

  35. Z. Hashin, J. Appl. Mech., 47, 329 (1980).

    Google Scholar 

  36. W. Zhou, K. Han, R. Qin, and Y. Zhang, Mater. Res. Express., 6, 085624 (2019).

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the National Natural Science Foundation of China (grant no. 11502064 and 11572109), the project of China Special Equipment Inspection and Research Institute (grant no. 2018qingnian04), and Key projects of science and technology research in Colleges and Universities of Hebei Province (grant no. ZD2017006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Zhou or Lian-hua Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, W., Wei, Zy., Wang, Gf. et al. Transverse Tensile Deformation and Failure of Three-dimensional Five-directional Braided Carbon Fiber Composites. Fibers Polym 22, 1099–1110 (2021). https://doi.org/10.1007/s12221-021-9199-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-021-9199-6

Keywords

Navigation