Skip to main content
Log in

Ecofriendly Modification of Acrylic Fabrics for Enhanced Transfer Printability

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In this study, acrylic fabrics were given desirable properties, such as UV protection, moisture regain, sinking performance, lateral migration performance, hydrophilicity, and air permeability, by coating these fabrics with nanoclay, namely, nanobentonite, and its nanocomposites. The pretreated and untreated acrylic fabrics were modified with different concentrations of sodium polyacrylate/bentonite nanocomposites using the pad-dry-cure technique. The surface morphologies and elemental compositions of the treated and untreated fabrics were investigated using high-resolution scanning electron microscopy (SEM) and dispersive X-ray spectroscopy (EDX), respectively. The particle size of the used nanobentonite was measured using transmission electron microscopy (TEM). The physical properties of the treated and untreated fabrics were measured and compared. Moreover, the performance of the treated and untreated fabrics in sublimation transfer printing with C.I. Disperse Red 60 was investigated. The color fastness properties of the printed fabrics during washing, perspiration, and rubbing were also evaluated. The results verified that treating acrylic fabrics with nanobentonite and its nanocomposites substantially improved the physical properties, transfer printability, and color fastness properties of the fabrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. M. Elgory, K. M. Seddik, M. Yahia, and L. K. El-Gabry, Egypt J. Chem, 63, 145 (2020).

    Google Scholar 

  2. A. Abou El-Kheir, N. A. Abd El-Ghany, M. M. Fahmy, S. E. Aboras, and L. K. El-Gabry, Egypt. J. Chem., 63, 85 (2020).

    Article  Google Scholar 

  3. H. El-Sayed, A. Abou El-Kheir, L. El-Gabry, and K. Haggag, Fiber. Polym., 20, 2106 (2019).

    Article  CAS  Google Scholar 

  4. A. P. Pereira, M. H. Silva, É. P. Lima, A. Paula, and F. J. Tommasini, Mater. Res, 20, 411 (2017).

    Article  Google Scholar 

  5. J. Yu, T. Zhou, Z. Pang, and Q. Wei, Text. Res. J, 86, 1171 (2016).

    Article  CAS  Google Scholar 

  6. M. Q. Zhang, M. Z. Rong, H. B. Zhang, and K. Friedrick, Polym. Eng. Sci., 43, 490 (2003).

    Article  CAS  Google Scholar 

  7. M. Joshi and A. Bhattacharyya, Text. Prog., 43, 155 (2011).

    Article  Google Scholar 

  8. A. A. Abou El-Kheir, M. Ezzat, F. Bassiouny, and L. K. El-Gabry, Cellulose, 25, 4805 (2018).

    Article  CAS  Google Scholar 

  9. Q. Hu, S. Qiao, F. Haghseresht, M. A. Wilson, and G. Lu, Ind. Eng. Chem., 45, 733 (2006).

    Article  CAS  Google Scholar 

  10. C. C. Wang, L. C. Juang, T. C. Hsu, C. K. Lee, J. F. Lee, and F. C. Huang, J. Colloid Interface Sci., 273, 80 (2004).

    Article  CAS  Google Scholar 

  11. M. H. Gabr, N. T. Phong, M. A. Abdelkareem, K. Okubo, K. Uzawa, I. Kimpara, and T. Fujii, Cellulose, 20, 819 (2013).

    Article  CAS  Google Scholar 

  12. Q. Fan, J. John, S. C. Ugbolue, A. R. Wilson, Y. S. Dar, and Y. Yang, AATCC Review, 3, 25 (2003).

    CAS  Google Scholar 

  13. L. K. El-Gabry, S. Shaarawy, A. A. El-Kheir, Z. M. Elgory, and A. Hebeish, Egypt. J. Chem, 61, 379 (2018).

    Article  Google Scholar 

  14. A. Bendak and L. K. El-Gabry, “A Review in the Chemical Modification of Acrylic Fibre to Improve Some of its Properties”, Bull. of the NRC. 31, 1 pp.87–98, 2006.

    Google Scholar 

  15. J. Bemska and J. Szkudlarek, AUTEX Res. J., 13, 67 (2013).

    Article  CAS  Google Scholar 

  16. M. El-Kashouti, S. Elhadad, and K. Abdel-Zaher, J. Text. Color. Polym. Sci., 16, 129 (2019).

    Google Scholar 

  17. L. K. El Gabry and O. A. Hakeim, J. Appl Polym. Sci., 94, 134 (2004).

    Article  Google Scholar 

  18. R. M. El-Shishtawy, S. H. Nassar, and N. S. E. Ahmed, Dyes Pigm, 74, 215 (2007).

    Article  CAS  Google Scholar 

  19. S. Battacharya, B. Gupta, A. K. Mukhejree, and R. Vardarajan, Indian J. Fibre Text., 30, 13 (2005).

    Google Scholar 

  20. J. Li and M. S. Ingber, Eng. Anal. Boundary Elem., 13, 83 (1994).

    Article  Google Scholar 

  21. H. Yang, S. Zhu, and N. Pan, J. Appl. Polym. Sci., 92, 3201 (2004).

    Article  CAS  Google Scholar 

  22. M. Sankareswari, R. Vidhya, P. Malliga, B. K. Selvi, and K. Neyvasagam, Int. J. Thin Films Sci. Technol., 6, 9 (2017).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lamiaa K. El Gabry.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Gabry, L.K., Abou El-Kheir, A.A., El-Sayad, H.S. et al. Ecofriendly Modification of Acrylic Fabrics for Enhanced Transfer Printability. Fibers Polym 22, 421–429 (2021). https://doi.org/10.1007/s12221-021-9042-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-021-9042-0

Keywords

Navigation