Skip to main content
Log in

Preparation and Characterization of PMIA Nanofiber Filter Membrane for Air Filter

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In this study, meta-aramid (PMIA) high-temperature filtration membranes with different solid content in N,N-dimethylacetamide (DMAC)/Anhydrous LiCl (LiCl)(100/5) mixed solvent system are prepared by electrospinning method. It is found that the retention rate of breaking strength of 12 wt% PMIA membrane is the highest, which is 71.29 %. With the increase of solid content in PMIA spinning solution, the crystallinity and air permeability of PMIA filter membrane also increase. Among them, the crystallinity of 12 wt% PMIA nanofiber membrane was the highest and the air permeability of 14 wt% PMIA nanofiber membrane reached 50.68 mm/s. The experimental results illustrate that the filtration efficiency of PMIA nanofiber filter membrane for 0.1 µm, 0.2 µm and 0.3 µm PSL are all about 99.9 % at different solid contents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Ding, M. Wang, X. F. Wang, J. Y. Yu, and G. Sun, Materials Today, 13, 16 (2010).

    Article  CAS  Google Scholar 

  2. S. Jiang, X. F. Meng, B. L. Chen, N. K. Wang, and G. K. Chen, J. Appl. Polym. Sci., 137, 49546 (2020).

    Article  CAS  Google Scholar 

  3. A. R. Allafchian, S. Kalani, P. Golkar, H. Mohammadi, and S. A. H. Jalali, J. Appl. Polym. Sci., 137, 49560 (2020).

    Article  CAS  Google Scholar 

  4. Y. Li, J. H. He, Q. L. Sun, and P. Wang, Thermal. Sci., 19, 1461 (2015).

    Article  Google Scholar 

  5. H. S. Park and Y. O. Park, J. Chem. Eng., 22, 165 (2005).

    CAS  Google Scholar 

  6. N. Ghochaghi, Ph. D. Thesis, Virginia Commonwealth University, 2014.

  7. K. Kosmider and J. Scott, Filtration+Separation, 39, 20 (2002).

    CAS  Google Scholar 

  8. J. Wang, S. C. Kim, and D. Y. H. Pui, J. Aerosol Sci., 39, 323 (2008).

    Article  CAS  Google Scholar 

  9. E. J. Ra, E. Ray, Y. H. Lee, and F. Beguin, Carbon, 47, 2984 (2009).

    Article  CAS  Google Scholar 

  10. A. S. Nain, J. C. Wong, C. Amon, and M. Sitti, Appl. Phys. Lett., 89, 1940 (2006).

    Article  Google Scholar 

  11. N. C. Wickremasinghe, V. A. Kumar, S. Y. Shi, and J. D. Hartgerink, ACS Biomeater. Sci. Eng., 1, 845 (2015).

    Article  CAS  Google Scholar 

  12. Y. Z. Zhang, H. W. Ou Yang, C. T. Lim, S. Ramakrishna, and Z. M. Huang, J. Biomed. Mater. Res. Part B: Appl. Biomater, 72b, 156 (2010).

    Article  Google Scholar 

  13. Y. C. Fang, M. Herbert, D. A. Schiraldi, and C. J. Ellison, J. Mater Sci., 49, 8252 (2014).

    Article  CAS  Google Scholar 

  14. E. S. Medeiros, G. M. Glenn, A. P. Klamczynski, W. J. Orts, and L. H. C. Mattoso, J. Appl. Polym. Sci., 113, 2322 (2010).

    Article  Google Scholar 

  15. J. Y. Lin, B. Ding, J. Y. Yu, and S. S. Al-Deyab, Matter. Lett., 69, 82 (2012).

    Article  CAS  Google Scholar 

  16. X. L. Zhao, S. Wang, X. Yin, J. Y. Yu, and B. Ding, Scientific Reports, 6, 35472 (2016).

    Article  CAS  Google Scholar 

  17. W. Sambaer, M. Zatloukal, and D. Kimmer, Chem. Eng. Sci., 82, 299 (2012).

    Article  CAS  Google Scholar 

  18. R. Givehchi, Q. H. Li, and Z. C. Tan, Fuel, 181, 1273 (2016).

    Article  CAS  Google Scholar 

  19. S. S. Guo, Q. F. Ke, H. Wang, X. Y. Jin, and Y. Lin, J. Appl. Polym. Sci., 128, 3652 (2013).

    Article  CAS  Google Scholar 

  20. L. A. Hoover, J. D. Schiffman, and M. Elimelech, Desalination, 308, 73 (2013).

    Article  CAS  Google Scholar 

  21. A. Patanaik, V. Jacobs, and R. D. Anandjiwala, J. Membr. Sci., 352, 136 (2010).

    Article  CAS  Google Scholar 

  22. L. Li, L. M. Shang, Y. X. Li, and C. F. Yang, Fiber. Polym., 18, 749 (2017).

    Article  CAS  Google Scholar 

  23. A. C. C. Bortolassi, S. Nagarajan, B. D. A. Lima, V. G. Guerra, M. L. Aguiar, V. Huon, L. Soussan, D. Cornu, P. Miele, and M. Bechelany, Mater. Sci. Eng. C, 102, 718 (2019).

    Article  CAS  Google Scholar 

  24. A. C. C. Bortolassi, V. G. Guerra, M. L. Aguiar, L. Soussan, D. Cornu, P. Miele, and M. Bechelany, Nanomaterials, 9, 1740 (2019).

    Article  CAS  Google Scholar 

  25. D. Zhang, D. Liu, Q. Ren, Y. Chen, and C. Yin, Polymer, 98, 11 (2016).

    Article  CAS  Google Scholar 

  26. J. Chung and S. Y. Kwak, Eur. Polym. J., 107, 46 (2018).

    Article  CAS  Google Scholar 

  27. A. Rajak, D. A. Hapidin, F. Iskandar, M. M. Munir, and K. Khairurrijal, Nanotechnology, 30, 425602 (2019).

    Article  Google Scholar 

  28. X. Tian, F. L. Zhang, B. J. Xin, Y. Liu, and Y. S. Zheng, Nanotechnology, 31, 055702 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China (Grant No. 11702169), Scientific Research Staring Foundation of Shanghai University of Engineering Science (Grant No. 2017-19). This work was supported by Talents Action Program of Shanghai University of Engineering Science (Grant NO. 2017RC432017) and National Natural Science Youth Fund (Grant NO. 2041808165). Application research on key Technologies of nano forming and surface treatment of flexible materials with special functions (Grant NO. 0239-E2-6202-19-023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Binjie Xin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, J., Tian, X., Xin, B. et al. Preparation and Characterization of PMIA Nanofiber Filter Membrane for Air Filter. Fibers Polym 22, 2413–2423 (2021). https://doi.org/10.1007/s12221-021-1123-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-021-1123-6

Keywords

Navigation