Skip to main content
Log in

Extraction and Effects of Mechanical Characterization and Thermal Attributes of Jute, Prosopis Juliflora Bark and Kenaf Fibers Reinforced Bio Composites Used for Engineering Applications

  • Regular Articles
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In the present work tensile, flexural, impact and hardness properties of Prosopis juliflora bark (PJb), jute fiber (JF) and kenaf fiber (KF) reinforced polyester composites are expressed for the first time. The challenge in working with natural fiber composites (NFC) is the large variation in properties and characteristics. The properties of NFC to an enormous degree are impacted by the sort of fibers, a natural condition where the plant fibers are sourced and the kind of fiber treatments. In this experimental investigation JF as a base material, PJb and KF are filler materials. The weight percentage of JF has been maintained as constant and the remaining two fiber fillers were varied. To investigate the mechanical characteristics of tensile, flexural, impact and hardness tests were performed as per ASTM standard. The mechanical test outcomes exposed a reliable propensity of an expansion in the above mechanical credits to including natural fiber fillers. Fourier transform infrared spectroscopy (FTIR) is utilized to identify the chemical composition of NF and SEM analysis utilized for interfacial adhesion between the NF and polyester matrix. Thermal consistency/degradation of NF was identified through Thermogravimetric analysis (TGA).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Cripps, “Fibre-reinforced Polymer Composites in Construction”, London, CIRIA, 2002.

    Google Scholar 

  2. M. F. Humphreys, “The Use of Polymer Composites in Construction”, International Conference on Smart and Sustainable Built Environment, Brisbane, Australia, 2003.

  3. “Composites for Infrastructure: a Guide for Civil Engineers”, Wheat Ridge, CO: Ray Pub. Inc., 1998.

  4. T. Aravinthan and T. Omar, “Fibre Composite Windmill Structure — Challenges in the Design and Development”, Fourth International Conference on FRP Composites in Civil Engineering (CICE2008), Zurich, Switzerland, 2008.

  5. G. V. Erp, C. Cattell, and S. Ayers, Constr. Build. Mater., 20, 2 (2006).

    Article  Google Scholar 

  6. A. Manalo, T. Aravinthan, W. Karunasena, and A. Ticoalu, Compos. Struct., 92, 603 (2010).

    Article  Google Scholar 

  7. M. Humphreys, “Development and Structural Investigation of Monocoque Fibre Composite Trusses”, Queensland University of Technology, Brisbane, 2003.

    Google Scholar 

  8. T. Omar, G. Van Erp, T. Aravinthan, and P. Key, “Innovative all Composite Multi-pultrusion Truss System for Stressed arch Deployable Shelters”, Alexandria, Egypt, 2007.

  9. R. Ahmadian and P. R. Mantena, Compos. Part B-Eng., 27B, 319 (1996).

    Article  CAS  Google Scholar 

  10. E. J. Barbero, “Introduction to Composite Materials Design”, Department of Mechanical & Aerospace Engineering, Taylor & Francis, 1999.

  11. J. Summerscales, N. P. Dissanayake, A. S. Virk, and W. Hall, Compos. Part A-Appl. Sci. Manuf., 41, 1329 (2010).

    Article  Google Scholar 

  12. A. Gopinath, M. S. Kumar, and A. Elayaperumal, Proce. Eng., 97, 2052 (2014).

    Article  CAS  Google Scholar 

  13. S. Sathees Kumar, Fiber. Polym., 21, 1508 (2020).

    Article  CAS  Google Scholar 

  14. S. Jothibasu, S. Mohanamurugan, R. Vijay, D. Lenin Singaravelu, A. Vinod, and M. R. Sanjay, J. Ind. Text., 49, 1036 (2020).

    Article  CAS  Google Scholar 

  15. R. Karnani, M. Krishnan, and R. Narayan, Polym. Eng. Sci., 37, 476 (1997).

    Article  CAS  Google Scholar 

  16. S. Ochi, Mech. Mater., 40, 446 (2008).

    Article  Google Scholar 

  17. T. Nishino, K. Hirao, M. Kotera, K. Nakamae, and H. Inagaki, Compos. Sci. Tech., 63, 1281 (2003).

    Article  CAS  Google Scholar 

  18. K. Oksman, M. Skrifvars, and J. F. Selin, Compos. Sci. Tech., 63, 1317 (2003).

    Article  CAS  Google Scholar 

  19. S. H. Lee and S. Wang, Compos Part A-Appl. Sci. Manuf., 37, 80 (2006).

    Article  CAS  Google Scholar 

  20. F. Hanan, M. Jawaid, and P. M. Tahir, J. Natur. Fib., doi: https://doi.org/10.1080/15440478.2018.1477083 (2018).

  21. S. S. Saravanakumar, A. Kumaravel, T. Nagarajan, P. Sudhakar, and R. Baskaran, Carbohydr. Polym., 92, 1928 (2013).

    Article  CAS  Google Scholar 

  22. B. S. Rajan, M. S. Balaji, and S. S. Saravanakumar, Mater. Res. Expr., 6, 035302 (2018).

    Article  Google Scholar 

  23. S. George, G. Venkataraman, and A. Parrida, Genome, 50, 470 (2007).

    Article  CAS  Google Scholar 

  24. A. Burkart, J. Arn. Arbor., 57, 217 (1976).

    Google Scholar 

  25. P. Tahir Mohd, B. A. Ahmer, S. O. A. Saifulazry, and Z. Ahmed, Bioresour, 6, 5260 (2011).

    Google Scholar 

  26. I. Vandeweyenberg, J. Chitruong, B. Vangrimde, and I. Verpoest, Compo. Part A-Appl. Sci. Manuf., 37, 1368 (2006).

    Article  Google Scholar 

  27. A. Valadez-Gonzalez, Compos. Part B-Eng., 30, 321 (1999).

    Article  Google Scholar 

  28. A. Valadez-Gonzalez, Compos. Part B-Eng., 30, 309 (1999).

    Article  Google Scholar 

  29. S. Sathees Kumar, Data in Brief, 28, 105054 (2020).

    Article  CAS  Google Scholar 

  30. S. Sathees Kumar, V. Mugesh Raja, B. Sridhar Babu, and K. Tirupathi, Smart Innov. Sys. Technol., 169, 645 (2020).

    Article  Google Scholar 

  31. S. Sudhagar, V. M. Raja, S. Sathees Kumar, and A. J. Samuel, Mater. Today: Proceed., 19, 589 (2019).

    CAS  Google Scholar 

  32. S. Sathees Kumar, Int. J. Inno. Techno. Expl. Eng., 8, 947 (2019).

    Google Scholar 

  33. R. Karnani, M. Krishan, and R. Narayan, Polym. Eng. Sci., 37, 476 (1997).

    Article  CAS  Google Scholar 

  34. D. Åkesson, M. Skrifvars, J. Seppälä, and M. Turunen, J. Appl. Polym. Sci., 119, 3004 (2011).

    Article  Google Scholar 

  35. S. Sathees Kumar, Int. J. Mech. Eng. Technol., 9, 575 (2018).

    Google Scholar 

  36. S. Sathees Kumar, Int. J. Rec. Technol. Eng., 8, 2338 (2019).

    Article  Google Scholar 

  37. P. Threepopnatkul, N. Kaerkitcha, and N. Athipongarporn, Compos. Part B-Eng., 40, 628 (2009).

    Article  Google Scholar 

  38. V. Mugesh Raja and S. Sathees Kumar, Mater. Res., 22, 6 (2019).

    Google Scholar 

  39. L. Y. Mwaikambo and Ansell, J. Appl. Polym. Sci., 84, 2222 (2002).

    Article  CAS  Google Scholar 

  40. T. Fisher, M. Hajaligol, B. Waymack, and D. Kellogg, Fuel, 80, 1799 (2002).

    Google Scholar 

  41. S. M. Mostashari and M. H. Fallah, J. Ind. Text., 37, 31 (2007).

    Article  CAS  Google Scholar 

  42. S. H. Aziz and M. P. Ansell, J. Compos. Sci. Technol., 64, 1219 (2004).

    Article  CAS  Google Scholar 

  43. S. Ouajai and R. A. Shanks, Polym. Degrad. Stab., 89, 327 (2005).

    Article  CAS  Google Scholar 

  44. S. Renneckar, A. G. Zink-Sharp, T. G. Ward, and W. C. Glasser, J. Appl. Polym. Sci., 93, 1484 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Muthalagu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muthalagu, R., Srinivasan, V., Sathees Kumar, S. et al. Extraction and Effects of Mechanical Characterization and Thermal Attributes of Jute, Prosopis Juliflora Bark and Kenaf Fibers Reinforced Bio Composites Used for Engineering Applications. Fibers Polym 22, 2018–2026 (2021). https://doi.org/10.1007/s12221-021-1092-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-021-1092-9

Keywords

Navigation