Skip to main content
Log in

Improvement of Copper Oxides-coated Ultra-high Molecular Weight Polyethylene Fibers Reinforced Rigid Polyurethane Composites in Strength and Toughness

  • Regular Articles
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The purpose of this work was to develop the high-performance ultra-high molecular weight polyethylene (UHMWPE) fibers reinforced rigid polyurethane (RPU) composites. UHMWPE fibers were electroless deposited by copper to form the copper oxides on the fiber surface. The results showed that the copper oxides-coated UHMWPE fibers had the positive effects on the mechanical properties of the composites. Compared with neat RPU, the tensile strength, tensile modulus, bending strength, and impact strength of copper oxides-coated UHMWPE fibers/RPU composites were increased by 20.4 %, 39.7 %, 11.0 % and 15.8 %, respectively. Interlaminar shear strength (ILSS) was also increased by 14.9 %. The dynamic mechanical analysis (DMA) proved the reinforcing effect of copper oxides-coated UHMWPE fibers. Both strength and toughness were increased mainly due to the metal oxides deposited on the fiber surface. On one hand, the copper ions and oxygen ions on the UNMWPE fiber surface could react with oxygen and hydrogen in polyurethane to form chemical bonds. On the other hand, the copper oxides increased the crack propagation path to improve the toughness of the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. D. Desai, J. V. Patel, and V. K. Sinha, Int. J. Adhes. Adhes., 23, 393 (2003).

    Article  CAS  Google Scholar 

  2. A. Noreen, K. M. Zia, M. Zuber, S. Tabasum, and A. F. Zahoor, Prog. Org. Coat., 91, 25 (2016).

    Article  CAS  Google Scholar 

  3. C. Kim and J. R. Youn, Polym-Plast. Technol., 39, 163 (2000).

    Article  CAS  Google Scholar 

  4. H. Yang, Q. Ye, Y. Zhou, Y. Xiang, Q. Xing, X. Dong, D. Wang, and W. Xu, Polymer, 55, 5500 (2014).

    Article  CAS  Google Scholar 

  5. W. J. Wood, R. G. Maguire, and W. H. Zhong, Compos.: Part B, 42, 584 (2011).

    Article  Google Scholar 

  6. B. Ramadhoni, O. Ujianto, and M. Nadapdap, IOP Conf. Series: Materials Science and Engineering, 319, 012041 (2018).

    Article  Google Scholar 

  7. L. Gibson and M. Ashby, “Cellular Solids: Structure and Properties”, p.487, Cambridge University Press, Cambridge, 2014.

    Google Scholar 

  8. N. J. Mills, C. Fitzgerald, A. Gilchrist, and R. Verdejo, Compos. Sci. Technol., 63, 2389 (2003).

    Article  CAS  Google Scholar 

  9. Y. J. Yan, H. Xia, Y. P. Qiu, Z. Z. Xu, and Q. Q. Ni, RSC Adv., 9, 9401 (2019).

    Article  CAS  Google Scholar 

  10. S. Teodoru, Y. Kusano, N. Rozlosnik, and P. K. Michelsen, Plasma Process. Polym., 6, S375 (2009).

    Article  CAS  Google Scholar 

  11. M. Mohammadalipour, M. Masoomi, M. Ahmadi, and S. Safi, RSC Adv., 6, 41793 (2016).

    Article  CAS  Google Scholar 

  12. X. Jin, W. Y. Wang, C. F. Xiao, T. Lin, L. N. Bian, and P. Hauser, Compos. Sci. Technol., 128, 169 (2016).

    Article  CAS  Google Scholar 

  13. W. D. Shen and J. Li, BioResources, 9, 6582 (2014).

    CAS  Google Scholar 

  14. S. P. Lin, J. L. Han, J. T. Yeh, F. C. Chang, and K. H. Hsieh, J. Appl. Polym. Sci., 104, 655 (2007).

    Article  CAS  Google Scholar 

  15. S. K. De and J. R. White, “Short Fiber-polymer Composites”, p.103, Woodhead Publ. Ltd., Cambridge Press, Cambridge, 1996.

    Book  Google Scholar 

  16. C. Vajrasthira, T. Amornsakchai, and S. Bualek-Limcharoen, J. Appl. Polym. Sci., 87, 1059 (2003).

    Article  CAS  Google Scholar 

  17. Z. Xing, M. H. Wang, W. H. Liu, J. T. Hu, and G. Z. Wu, Radiat. Phys. Chem., 86, 84 (2013).

    Article  CAS  Google Scholar 

  18. C. Y. Huang, J. Y. Wu, C. S. Tsai, K. H. Hsieh, J. T. Yeh, and K. N. Chen, Surf. Coat. Tech., 231, 507 (2013).

    Article  CAS  Google Scholar 

  19. H. J. Liu, D. Xie, L. M. Qian, X. R. Deng, Y. X. Leng, and N. Huang, Surf. Coat. Tech., 205, 2697 (2011).

    Article  CAS  Google Scholar 

  20. S. P. Lin, J. L. Han, J. T. Yeh, F. C. Chang, and K. H. Hsieh, J. Appl. Polym. Sci., 104, 655 (2007).

    Article  CAS  Google Scholar 

  21. S. Debnath, R. Ranade, S. L. Wunder, G. R. Baran, J. Zhang, and E. R. Fisher, J. Appl. Polym. Sci., 96, 1564 (2005).

    Article  CAS  Google Scholar 

  22. M. S. Silverstein and O. Breuer, Compos. Sci. Technol., 48, 151 (1993).

    Article  CAS  Google Scholar 

  23. S. I. Moon and J. Jang, Compos. Sci. Technol., 59, 487 (1999).

    Article  CAS  Google Scholar 

  24. S. Bagherifard, M. F. Molla, D. Kajanek, R. Donnini, B. Hadzima, and M. Guagliano, Acta Biomater., 98, 88 (2019).

    Article  CAS  Google Scholar 

  25. N. Pinto, A. N. R. da Silva, E. Fachini, P. Carrión, R. Furlan, and I. Ramos, Abstracts of Papers of the American Chemical Society, 226, U402 (2003).

    Google Scholar 

  26. W. W. Li, L. Meng, L. Wang, J. S. Mu, and Q. W. Pan, Surf. Interface Anal., 48, 1316 (2016).

    Article  CAS  Google Scholar 

  27. L. Meng, W. W. Li, R. L. Ma, M. M. Huang, J. W. Wang, Y. X. Luo, J. H. Wang, and K. W. Xia, Eur. Polym. J., 105, 55 (2018).

    Article  CAS  Google Scholar 

  28. L. Meng, W. W. Li, R. L. Ma, M. M. Huang, Y. B. Cao, and J. W. Wang, Polym. Adv. Technol., 29, 843 (2018).

    Article  CAS  Google Scholar 

  29. L. L. Feng, R. Wang, Y. Y. Zhang, S. P. Ji, Y. M. Chuan, W. Zhang, B. Liu, C. Yuan, and C. X. Du, J. Mater. Sci., 54, 1520 (2019).

    Article  CAS  Google Scholar 

  30. D. Goranova, G. Avdeev, and R. Rashkov, Surf. Coat. Tech., 240, 204 (2014).

    Article  CAS  Google Scholar 

  31. G. Kou, L. Guo, Z. Li, J. Peng, J. Tian, and C. Huo, J. Alloy Compd., 694, 1054 (2017).

    Article  CAS  Google Scholar 

  32. N. D. Luonga, L. Sinh, M. Minna, W. Jürgen, W. Torsten, S. Matthias, and S. Jukka, Eur. Polym. J., 81, 129 (2016).

    Article  Google Scholar 

  33. Z. Wu, L. Liu, B. Shen, C. Zhong, and W. Hu, Mat. Sci. Eng.-A., 556, 767 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation for Young Scientists of China [grant number 51203080], the Natural Science Foundation of Zhejiang Province [grant number LY20E030002], and the Natural Science Foundation of Ningbo [grant number 2019A610134].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiwei Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Feng, M., Liu, X. et al. Improvement of Copper Oxides-coated Ultra-high Molecular Weight Polyethylene Fibers Reinforced Rigid Polyurethane Composites in Strength and Toughness. Fibers Polym 22, 1883–1888 (2021). https://doi.org/10.1007/s12221-021-0890-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-021-0890-4

Keywords

Navigation