Skip to main content
Log in

Smart Wearable, Highly Sensitive Pressure Sensor with MWNTs/PPy Aerogel Composite

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The fabrication of highly sensitive, low-cost pressure sensors with reliable detection performance has received plenty of attention as there is an urgent need for body movement detection and monitoring devices in different fields. The MWNTs/PPy AG composite based piezo-resistive pressure sensor was fabricated using two coating processes. The first coating was with multi-walled carbon nanotubes (MWNTs) and the second was poly-pyrrole (PPy) coating with in situ polymerization performed on commercially available aerogel (AG) as the substrate. The poly-dopamine (PDA) coating was applied as a substrate surface modification method to investigate its effect to enhance the conductivity, sensitivity and other performance aspects of MWNTs AG, PPy AG and MWNTs/PPy AG. An anionic surfactant, sodium dodecyl benzene sulfonate (SDBS) was used as the dispersing agent to prepare a homogeneously mixed MWNTs aqueous solution, which was then used as a scouring agent to remove an existed surface coating on the AG. The retained SDBS in the MWNTs AG worked as a dopant with pyrrole in situ polymerization to improve the conductivity. MWNTs/PPy AG pressure sensor shows high sensitivity (34.64 kPa−1 with 1 kPa), acceptable conductivity and good stability over 5000 continues pressure cycles in the 0.45–4 kPa pressure range. Lowest detection level of MWNTs/PPy AG was close to 0.2 kPa. The MWNTs/PPy AG composite shows promising performance in detecting human body movements in the medium pressure range, which is generally used for health care, rehabilitation and aesthetic purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Zang, Y. Jiang, Xu. Wang, Xi. Wang, J. Ji, and M. Xue, Sensor. Actuat. B-Chem., 273, 1195 (2018).

    Article  CAS  Google Scholar 

  2. C. Merlini, R. S. Almeida, M. A. D’Avila, W. H. Schreiner, and G. M. O. Barra, Mater. Sci. Eng.: B, 179, 52 (2014).

    Article  CAS  Google Scholar 

  3. S. J. Kim, S. Mondal, B. K. Min, and C. G. Choi, ACS Appl. Mater. Interfaces, 10, 36377 (2018).

    Article  CAS  Google Scholar 

  4. H. Zhuo, Y. Hu, Z. Chen, and L. Zhong, Carbohydr. Polym., 215, 322 (2019).

    Article  CAS  Google Scholar 

  5. K. Zhang, A. Xie, F. Wu, W. Jiang, M. Wang, and W. Dong, Mater. Res. Exp., 3, 055008 (2016).

    Article  Google Scholar 

  6. N. G. Sahoo, Y. C. Jung, H. H. So, and J. W. Cho, Synth. Met., 157, 374 (2007).

    Article  CAS  Google Scholar 

  7. T.-M. Wu, H.-L. Chang, and Y.-W. Lin, Compos. Sci. Technol., 69, 639 (2009).

    Article  CAS  Google Scholar 

  8. H. J. Kim, Current Appl. Phys., 19, 1238 (2019).

    Article  Google Scholar 

  9. R. M. A. P. Lima, J. J. A. Espinoza, F. A. G. Silva, and H. P. Oliveira, ACS Appl. Mater. Interfaces, 10, 13783 (2018).

    Article  CAS  Google Scholar 

  10. Y. Jia, D. Ma, and X. Wang, 3 Biotech, 3, 10 (2020).

    Google Scholar 

  11. X. T. Tran, S. S. Park, S. Song, M. S. Haider, S. M. Imran, Hussain, M. Kim, and H. Taik, J. Mater. Sci., 54, 3156 (2018).

    Article  Google Scholar 

  12. T. Qian, C. Yu, X. Zhou, P. Ma, S. Wu, L. Xu, and J. Shen, Biosens. Bioelectron, 58, 237 (2014).

    Article  CAS  Google Scholar 

  13. A. D. Arulraj, E. Sundaram, V. S. Vasantha, and B. Neppolian, New J. Chem., 42, 3748 (2018).

    Article  CAS  Google Scholar 

  14. L.-J. Kong, M.-F. Pan, G.-Z. Fang, X.-L. He, Y.-Q. Xia, and S. Wang, RSC Adv., 5, 11498 (2015).

    Article  CAS  Google Scholar 

  15. K.-S. Teh and L. Lin, J. Micromech. Microeng., 15, 2019 (2005).

    Article  CAS  Google Scholar 

  16. A. Pathak and B. D. Gupta, Biosens. Bioelectron., 133, 205 (2019).

    Article  CAS  Google Scholar 

  17. B. Liu, X. Liu, Z. Yuan, Y. Jiang, Y. Su, J. Ma, and H. Tai, Sensor. Actuat. B-Chem., 295, 86 (2019).

    Article  CAS  Google Scholar 

  18. Y. Chen, Y. Li, H.-C. Wang, and M. J. Yang, Carbon, 45, 357 (2007).

    Article  CAS  Google Scholar 

  19. S. G. Bachhav and D. R. Patil, J. Mater. Sci. Chem. Eng., 3, 30 (2015).

    CAS  Google Scholar 

  20. B. S. Okan, J. S. M. Zanjani, L. Letofsky-Papst, F. C. Cebeci, and Y. Z. Menceloglu, Mater. Chem. Phys., 167, 171 (2015).

    Article  CAS  Google Scholar 

  21. C. Yang, L. Li, J. Zhao, J. Wang, J. Xie, Y. Cao, M. Xue, and C. Lu, ACS Appl. Mater. Interfaces, 10, 25811 (2018).

    Article  CAS  Google Scholar 

  22. G. Liang, L. Zhu, J. Xu, D. Fang, Z. Bai, and W. Xu, Electrochim. Acta, 103, 9 (2013).

    Article  CAS  Google Scholar 

  23. M. Omastová and M. Mičušík, Chemical Papers, 66, 392 (2012).

    Article  Google Scholar 

  24. J. Xue, J. Chen, J. Song, L. Xu, and H. Zeng, J. Mater. Chem. C, 5, 11018 (2017).

    Article  CAS  Google Scholar 

  25. J. Yang, Y. Li, Y. Zheng, Y. Xu, Z. Zheng, X. Chen, and W. Liu, Small, 15, 1902826 (2019).

    Article  CAS  Google Scholar 

  26. S. Zhou, M. Wang, X. Chen, and F. Xu, ACS Sustainable Chem. Eng., 3, 3346 (2015).

    Article  CAS  Google Scholar 

  27. G. Zu, K. Kanamori, A. Maeno, H. Kaji, K. Nakanishi, and J. Shen, Polym. Chem., 10, 4980 (2019).

    Article  CAS  Google Scholar 

  28. Z. Yang, X. Liu, Y. Wu, and C. Zhang, Sensor. Actuat. B-Chem., 212, 457 (2015).

    Article  CAS  Google Scholar 

  29. B. Liang, J. Wu, Q. Feng, J. Huang, T. Zhang, and Z. Yan, Mater. Lett., 279, 128474 (2020).

    Article  CAS  Google Scholar 

  30. V. Ball, D. D. Frari, M. Michel, J. M. Buechler, V. Toniazzo, K. M. Singh, J. Gracio, and D. Ruch, BioNanoScience, 2, 16 (2011).

    Article  Google Scholar 

  31. F. F. Ma, D. Zhang, N. Zhang, T. Huang, and Y. Wang, Chem. Eng. J., 354, 432 (2018).

    Article  CAS  Google Scholar 

  32. Y. Zhao, Y. Li, W. Kang, Y. He, W. Liu, H. Liu, and B. Cheng, RSC Adv., 7, 49576 (2017).

    Article  CAS  Google Scholar 

  33. M. Amjadi, K.-U. Kyung, I. Park, and M. Sitti, Adv. Funct. Mater., 26, 1678 (2016).

    Article  CAS  Google Scholar 

  34. Y. He, Y. Ming, W. Li, Y. Li, M. Wu, J. Song, X. Li, and H. Liu, Sensors (Basel), 18, 1338 (2018).

    Article  Google Scholar 

Download references

Acknowledgment

The author would like to thank the financial support of the Natural Science Foundation of Tianjin (Grant No. 18JCYBJC18500), the Postdoctoral Science Foundation of China (Grant No. 2016M591390), the “Technology Winter Olympics” key special project special project of National Key Research and Development Program (2019YFF0302100). Moreover, the support given by The Department of School of Textile Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hao Liu or Li Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gunasekara, D.S.W., He, Y., Liu, H. et al. Smart Wearable, Highly Sensitive Pressure Sensor with MWNTs/PPy Aerogel Composite. Fibers Polym 22, 2102–2111 (2021). https://doi.org/10.1007/s12221-021-0787-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-021-0787-2

Keywords

Navigation