Skip to main content
Log in

Wear Comfort of Woven Fabrics for Clothing Made from Composite Yarns

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

This study examined the wear comfort of woven fabrics made from different types of yarns and compared their thermal and moisture transmission properties with the yarn structures and their constituent fiber characteristics. Seven types of yarn were prepared on the siro spinning system, and eight types of fabric specimen were prepared using core/sheath, siro-fil yarn, siro yarn and ring staple yarn specimens to examine the wear comfort characteristics of the fabric specimens. The core/sheath yarn, siro-yarn and ring staple yarn structure and constituent filament characteristics (Coolmax®) played a very important role in the wicking property of the fabrics. The characteristics of the hi-multi PET filaments in siro-fil yarn fabric affected strongly the wicking property due to the fine capillary channel in the hi-multi PET filament. The drying property was highly dependent on the fabric porosity and non-circular cross-section of the constituent filament. Coolmax®/tencel core/sheath fabric showed the best drying property, whereas, siro-fil yarn fabric exhibited inferior drying property due to the lower fabric porosity by compact yarn structure. The water vopor resistance of the Coolmax®/tencel core/sheath yarn fabric exhibited the lowest value, i.e. the best breathability, but compact siro-staple yarn fabric showed bad breathability due to the low porosity by siro-twist. In addition, the core/sheath yarn fabric exhibited the highest heat retention rate due to the higher fabric porosity than the other fabrics. The bamboo spun yarn and tencel siro-spun yarn fabrics exhibited the lowest heat retention rate due to the high thermal conductivity of the bamboo and tencel fibers, which was partly influenced by lower porosity of the these fabrics. In summarizing, Coolmax®/tencel core/sheath yarn fabric exhibited superior wear comfort suitable for winter warmth clothing. Staple yarn fabrics composed of bamboo and tencel fibers with high thermal conductivity exhibited low heat retention rate applicable for summer clothing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Zhang, Y. Watanabe, S. H. Kim, H. Tokura, and R. H. Gong, J. Text. Inst., 92, 372 (2001).

    Article  Google Scholar 

  2. S. J. Park, H. Tokura, and M. Sobajima, Text. Res. J., 76, 383 (2006).

    Article  CAS  Google Scholar 

  3. Q. Chen, J. Fan, M. K. Sarkar, and K. Bal, Text. Res. J., 81, 1039 (2011).

    Article  CAS  Google Scholar 

  4. Q. Chen, J. Fan, M. K. Sarkar, and G. Jiang, Text. Res. J., 80, 568 (2010).

    Article  CAS  Google Scholar 

  5. H. Okada, U.S. Patent, 4,530,873 (1985).

  6. I. Strauss and S. A. Rankin Jr, U.S. Patent, 5050406 (1991).

  7. Y. K. Lee, U.S. Patent, 6,381,994 (2002).

  8. P. Yeh, U.S. Patent, 6,509,285 (2003).

  9. T. R. Burrow and H. Firgo, U.S. Patent, 8,127,575 (2012).

  10. J. Fan, Y. C. Szeto, and M. K. Sarkar, U.S. Patent, 8,486,847 (2013).

  11. J. T. Fan, M. K. Sarkar, Y. C. Szeto, and X. M. Tao, Mater. Lett., 61, 561 (2007).

    Article  CAS  Google Scholar 

  12. M. K. Sarkar, J. T. Fan, Y. C. Szeto, and X. Tao, Text. Res. J., 79, 657 (2009).

    Article  CAS  Google Scholar 

  13. M. K. Sarkar, J. T. Fan, Y. C. Szeto, and X. M. Tao, Fiber. Polym., 10, 343 (2009).

    Article  Google Scholar 

  14. C. I. Su, J. X. Fang, X. H. Chen, and W. Y. Wu, Text. Res. J., 77, 764 (2007).

    Article  CAS  Google Scholar 

  15. N. Ucar, M. Ucar, A. Demir, and E. Beskisiz, Tekstilve Konfeksiyon., 2, 83 (2009).

    Google Scholar 

  16. N. Ucar, E. Beskisiz, and A. Demir, Text. Res. J., 79, 1539 (2009).

    Article  CAS  Google Scholar 

  17. E. Beskisiz, N. Uçar, and A. Demir, Text. Res. J., 79, 1459 (2009).

    Article  CAS  Google Scholar 

  18. B. Eskin, N. Uçar, and A. Demir, Text. Res. J., 81, 1503 (2011).

    Article  CAS  Google Scholar 

  19. U. J. Patil, C. D. Kane, and P. Ramesh, J. Text. Inst., 100, 457 (2009).

    Article  Google Scholar 

  20. B. A. McGregor and M. Naebe, J. Text. Inst., 104, 606 (2013).

    Article  CAS  Google Scholar 

  21. R. K. Varshney, V. K. Kothari, and S. Dhamija, J. Text. Inst., 101, 495 (2010).

    Article  CAS  Google Scholar 

  22. S. J. Kim and H. A. Kim, J. Kor. Soc. Clot & Text., 41, 84 (2017).

    Article  Google Scholar 

  23. H. A. Kim, J. Text. Inst., 108, 1647 (2017).

    Article  CAS  Google Scholar 

  24. S. J. Kim and H. A. Kim, J. Kor. Soc. Clot & Text., 41, 28 (2017).

    Article  Google Scholar 

  25. Z. Xia, X. Wang, W. Ye, H. A. Eltahir, and W. Xu, Text. Res. J., 82, 1255 (2012).

    Article  CAS  Google Scholar 

  26. W. Y. Liu, Y. P. Yu, J. H. He, and S. Y. Wang, Text. Res. J., 77, 195 (2007).

    Article  CAS  Google Scholar 

  27. M. N. Sun and K. P. S. Cheng, Text. Res. J., 70, 261 (2000).

    Article  CAS  Google Scholar 

  28. L. N. Zhang and J. H. He, Text. Res. J., 79, 243 (2009).

    Article  CAS  Google Scholar 

  29. W. Y. Liu, Y. P. Yu, J. H. He, and S. Y. Wang, Text. Res. J., 77, 200 (2007).

    Article  CAS  Google Scholar 

  30. S. Liu, J. Dai, H. Jia, X. Liu, and B. Xu, Text. Res. J., 82, 985 (2012).

    Article  CAS  Google Scholar 

  31. H. I. Icoglu and A. Kirecci, J. Text. Inst., 102, 114 (2012).

    Article  CAS  Google Scholar 

  32. Z. Zupin, A. Hladnik, and K. Dimitrovski, Text. Res. J., 82, 117 (2012).

    Article  CAS  Google Scholar 

  33. S. J. Kim and H. A. Kim, Text. Res. J., 88, 987 (2018).

    Article  CAS  Google Scholar 

  34. H. A. Kim and S. J. Kim, Fiber. Polym., 17, 427 (2016).

    Article  CAS  Google Scholar 

  35. E. A. McCullough, J. Huang, and C. S. Kim, J. ASTM Int., 1, 1 (2004).

    Article  Google Scholar 

  36. J. Huang, Polym. Test., 25, 709 (2006).

    Article  CAS  Google Scholar 

  37. J. Fan and L. Hunter, “Engineering Apparel Fabric and Garment”, p.210, The Text. Inst., CRS Press, North America, 2009.

    Book  Google Scholar 

  38. P. D. Dubrovski and M. M. Ziberna-sujica, Fibers Text. East. Eur., 3, 37 (1995).

    Google Scholar 

  39. P. D. Dubrovski, Text. Res. J., 70, 915 (2000).

    Article  Google Scholar 

  40. A. B. Nyoni and D. Brook, J. Text. Inst., 97, 119 (2006).

    Article  Google Scholar 

  41. A. Das, M. Zimniewska, and R. D. Mal, J. Text. Inst., 100, 420 (2009).

    Article  CAS  Google Scholar 

  42. R. Fangueiro, A. Filgueiras, F. Soutinho, and X. Meidi, Text. Res. J., 80, 1522 (2010).

    Article  CAS  Google Scholar 

  43. B. Miller, Int. Nonwoven J., 9, 35 (2000).

    Google Scholar 

  44. A. Das, V. K. Kothari, and M. Balaji, J. Text. Inst., 98, 261 (2007).

    Article  Google Scholar 

  45. A. Das, V. K. Kothari, and M. Balaji, J. Text. Inst., 98, 363 (2007).

    Article  CAS  Google Scholar 

  46. J. P. Fohr, D. Couton, and G. Treguier, Text. Res. J., 72, 1 (2002).

    Article  CAS  Google Scholar 

  47. M. Bona, “Textile Quality”, p.150, Texilia, Biella, 1994.

    Google Scholar 

  48. A. Das and S. M. Ishtiaque, J. Text. Apparel Technol. Manag., 3, 1 (2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyun Ah Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H.A. Wear Comfort of Woven Fabrics for Clothing Made from Composite Yarns. Fibers Polym 22, 2344–2353 (2021). https://doi.org/10.1007/s12221-021-0562-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-021-0562-4

Keywords

Navigation