Skip to main content
Log in

Improvement of Pineapple Leaf Fiber Quality by Pectinase Produced from Newly Isolated Bacillus subtilis subsp. inaquosorum P4-1

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

This research aims to optimize the conditions for improvement of pineapple leaf fiber quality using pectinase from selected bacterial strains compared with the commercial ones. First, Bacillus subtilis subsp. inaquosorum P4-1 was selected for its highest capability of pectinase production (19.59±0.47 U/ml) obtained from natural sources in Thailand. After that, the response surface methodology was applied for the optimization of cultivation condition to reach highest pectinase production. Highest pectinase activity at 59.86 U/ml was obtained when B. subtilis P4-1 was cultivated at 150 rpm, 35 °C in the liquid media containing 18.65 g/l citrus pectin, 4.12 g/l Monosodium-L-glutamate, 2.4 g/l KH2PO4, 0.5 g/l MgSO4·7H2O, 0.8 g/l Na2HPO4, 3 g/l (NH4)2SO4, 0.2 g/l CaCl2. To improve the pineapple leaf fiber quality, the pineapple leaves were first fed into the fiber extraction machine to obtain pineapple leaf fiber as raw materials to be used in this experiment. The 3 commercially available pectinase in Thailand: Pectinex Ultra Tropical, Pectinex Ultra SP-L and Scourzyme L, were compared and the results showed that Pectinex Ultra SP-L produced pineapple leaf fiber with the best quality at enzyme:fiber ratio of 1:10 in combination with 0.75 % tergitol surfactant after 1 day of soaking period. The same conditions were then applied for the improvement of pineapple leaf fiber quality using pectinase from selected bacterial B. subtilis P4-1. The resulting fibers showed no significant difference with that from the commercial pectinase after the sensory test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. F. Van Sumere in “The Biology and Processing of Flax” 1st ed. (C. F. Van Sumere and H. S. S. Sharma Eds.) pp.157–198, M Publications, Belfast, Northern Ireland, 1992.

  2. C. F. Van Sumere and H. S. S. Sharma, Asp. Appl. Biol., 28, 15 (1991).

    Google Scholar 

  3. G. Henriksson, D. E. Akin, D. Slomczynski, and K. E. L. Eriksson, J. Biotechnol., 68, 115 (1999).

    Article  CAS  Google Scholar 

  4. J. Zhang, G. Henriksson, and G. Johansson, J. Biotechnol., 81, 85 (2000).

    Article  CAS  Google Scholar 

  5. D. E. Akin, J. A. Foulk, R. B. Dodd, and D. D. McAlister III, J. Biotechnol., 89, 193 (2001).

    Article  CAS  Google Scholar 

  6. D. E. Akin, G. Henriksson, J. D. Evans, A. P. S. Adamsen, J. A. Foulk, and R. B. Dodd, J. Nat. Fibers, 1, 21 (2004).

    Article  CAS  Google Scholar 

  7. D. E. Akin, B. Condon, M. Sohn, J. A. Foulk, R. B. Dodd, and L. L. Rigsby, Ind. Crops Prod., 25, 136 (2007).

    Article  CAS  Google Scholar 

  8. J. D. Evans, D. E. Akin, and J. A. Foulk, J. Biotechnol., 97, 223 (2002).

    Article  CAS  Google Scholar 

  9. C. Sittidilokratna, S. Suthirawut, L. Chitradon, V. Punsuvon, P. Vaithanomsat, and P. Siriacha, Sci. Asia, 33, 131 (2007).

    Article  CAS  Google Scholar 

  10. S. Alix, L. Lebrun, S. Marais, E. Philippe, A. Bourmaud, C. Baley, and C. Morvan, Carbohydr. Polym., 87, 177 (2012).

    Article  CAS  Google Scholar 

  11. J. Cao, L. Zheng, and S. Chen, Enzyme Microb. Technol., 14, 1013 (1992).

    Article  CAS  Google Scholar 

  12. I. Alkorta, C. Garbisu, M. J. Llama, and J. L. Serra, Process Biochem., 33, 21 (1998).

    Article  CAS  Google Scholar 

  13. P. K. Kashyap, P. K. Vohra, S. Chopra, and R. Tewari, Bioresour. Technol., 77, 215 (2000).

    Article  Google Scholar 

  14. P. K. Hitha and D. Girija, J. Sci. Res., 3, 632 (2012).

    Google Scholar 

  15. J. Sambrook and R. W. Russell, “Molecular Cloning: A Laboratory Manual”, 3rd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 2001.

    Google Scholar 

  16. D. J. Lane in “Nucleic Acid Techniques in Bacterial Systematic” (E. Stackebrandt and M. Goodfellow Eds.), pp.115–175, John Wiley & Sons, Chichester, 1991.

  17. Y. Anzai, Y. Kudo, and H. Oyaizu, Inter. J. Syst. Bacteriol., 47, 249 (1997).

    Article  CAS  Google Scholar 

  18. J. Chun, J. Lee, M. Kim, S. Kim, B. K. Kim, and Y. Lim, J. Syst. Evol. Microbiol., 57, 2259 (2007).

    Article  CAS  Google Scholar 

  19. K. Tamura, J. Dudley, A. Nei, and S. Kumar, Mol. Biol. Evol., 24, 1596 (2007).

    Article  CAS  Google Scholar 

  20. N. Saitou and M. Nei, Mol. Biol. Evol., 4, 406 (1987).

    CAS  PubMed  Google Scholar 

  21. J. Felsenstein, Evolution, 39, 783 (1985).

    Article  Google Scholar 

  22. M. Kimura, J. Mol. Evol., 16, 111 (1980).

    Article  CAS  Google Scholar 

  23. R. L. Plackett and J. P. Burman, Biometrika, 33, 305 (1946).

    Article  Google Scholar 

  24. G. L. MIiller, R. Blum, and W. E. Glennon, “Quartermaster Research and Engineering Center”, Xatick, Mass, 1995.

    Google Scholar 

  25. D. O. Silva, M. M. Attwood, and D. W. Tempest, World J. Microb Biot., 9, 574 (1993).

    Article  CAS  Google Scholar 

  26. E. Aghaie, M. Pazouki, M. R. Hosseini, M. Ranjbar, and F. Ghavipanjeh, Chem. Eng. J., 147, 245 (2009).

    Article  CAS  Google Scholar 

  27. H. Bos, Thesis, The Eindhven University of Technology, The Netherlands, 2004.

  28. L. Marrot, A. Lefeuvre, B. Pontoire, A. Bourmaud, and C. Baley, Crop. Prod., 51, 317 (2013).

    Article  CAS  Google Scholar 

  29. R. Moya, A. Berrocal, A. L. R. Zuniga, and J. R. Vega-Baudrit, Bioresources, 11, 8756 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Our appreciation goes to Kasetsart University Research and Development Institute (KURDI) for their support and endorsement of this research. Our appreciation also goes to the natural fiber producer group, Ban Kha District, Ratchaburi, for their sponsorship of the fibers from the pineapple leaves that were used throughout the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rungsima Chollakup.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaithanomsat, P., Trakunjae, C., Meelaksana, J. et al. Improvement of Pineapple Leaf Fiber Quality by Pectinase Produced from Newly Isolated Bacillus subtilis subsp. inaquosorum P4-1. Fibers Polym 23, 576–588 (2022). https://doi.org/10.1007/s12221-021-0120-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-021-0120-0

Keywords

Navigation