Skip to main content
Log in

4D-Printing — Fused Deposition Modeling Printing and PolyJet Printing with Shape Memory Polymers Composite

  • Regular Articles
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The main objective of this paper is to use 4D printing method to design shape memory polymers (SMP) for developing smart textile and wearable products. SMPs are stimulating, responsive shape-changing polymers that can change its shape upon exposure to an external stimulus, such as light, temperature, chemicals, etc. In this paper, polyurethan SMP, which can change its shape as the temperature changes, was employed. We offer two methods for controlling the temperature of the specimen. The first method is to mix the conductive SWCNT into the SMP and the second method is to simultaneously print the SMP and a conductive material (Silver paste), the sample will be heated by applying an electric current to it. SMP pellets were processed to be suitable for each method for fabrication of two types of SMP and SMP/m-SWCNT arrays using an extrusion system, both of which were input materials for 3D deposition models (FDM). The samples printed using this system were compared and assessed. Herein, the comparisons of the materials, structures, processes, and the effectiveness of the methods are shown. The samples were compared to determine the advantages and disadvantages of each method, to form a basis on which a proper method for wearable products can be selected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Behl and A. Lendlein, Maer. Today, 10, 20 (2007).

    Article  CAS  Google Scholar 

  2. A. Lendlein, H. Jiang, O. Junger, and R. Langer, Nature, 434, 879 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. K. M. Lee, H. Koerner, R. Vaia, T. Bunning, and T. White, Soft Matter, 7, 4318 (2011).

    Article  CAS  Google Scholar 

  4. N. G. Sahoo, Y. C. Jung, N. S. Goo, and J. W. Cho, Macromol. Mater. Eng., 290, 1049 (2005).

    Article  CAS  Google Scholar 

  5. H. Meng, J. Hu, and J. Intell, Mater. Syst. Struct., 21, 859 (2010).

    Article  CAS  Google Scholar 

  6. Y. Yu, K. Hearon, T. Wilson, and D. Maitland, Smart Mater. Struct., 20, 085010 (2011).

    Article  PubMed  Google Scholar 

  7. B. Yang, W. M. Huang, C. Li, and L. Li, J. Polym., 47, 1348 (2006).

    Article  CAS  Google Scholar 

  8. J. S. Leng, X. Lan, Y. J. Liu, and S. Y. Du, Prog. Mater. Sci., 56, 1077 (2011).

    Article  CAS  Google Scholar 

  9. T. S. Ly and Y. J. Kim, IJPEM-GT, 4, 267 (2017).

    Google Scholar 

  10. J. S. Leng, W. M. Huang, X. Lan, Y. J. Liu, and S. Y. Du, Appl. Phys. Lett., 92, 204101 (2008).

    Article  Google Scholar 

  11. J. W. Cho, J. W. Kim, Y. C. Jung, and N. S. Goo, Macromol. Rapid Commun., 26, 412 (2005).

    Article  CAS  Google Scholar 

  12. W. M. Huang, C. L. Song, Y. Q. Fu, C. C. Wang, Y. Zhao, H. Purnawali, H. B. Lu, C. Tang, Z. Ding, and J. L. Zhang, Adv. Drug Deliv. Rev., 65, 515 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. G. F. Hu, A. R. Damanpack, M. Bodaghi, and W. H. Liao, Smart Mater. Struct., 26, 125023 (2017).

    Article  Google Scholar 

  14. S. Tibbits, Architect. Des., 84, 116 (2014).

    Google Scholar 

  15. M. Bodaghi, A. R. Damanpack, and W. H. Liao, Smart Mater. Struct., 25, 105034 (2016).

    Article  Google Scholar 

  16. Q. Ge, C. K. Dunn, H. J. Qi, and M. L. Dunn, Smart Mater. Struct., 23, 094007 (2014).

    Article  Google Scholar 

  17. S. E. Bakarich, I. Gorkin, M. Panhuis, and G. M. Spinks, Macromol. Rapid Commun., 36, 1211 (2015).

    Article  CAS  Google Scholar 

  18. E. J. Pei, Assembly Autom., 34, 310 (2014).

    Article  Google Scholar 

  19. D. Raviv, W. Zhao, C. McKnelly, A. Papadopoulou, A. Kadambi, B. Shi, S. Hirsch, D. Dikovsky, M. Zyracki, C. Olguin, R. Raskar, and S. Tibbits, Sci. Rep., 4, 7422 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Q. Ge, H. J. Qi, and M. L. Dunn, Appl. Phys. Lett., 103, 131901 (2013).

    Article  Google Scholar 

  21. K. Song, Y. Zhang, J. Meng, E. C. Green, N. Tajaddod, H. Li, and M. L. Minus, Materials, 6, 2543 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. H. Meng and G. Li, J. Polym., 54, 2199 (2013).

    Article  CAS  Google Scholar 

  23. D. J. Nelson, H. Rhoads, and C. Brammer, J. Chem. C, 111, 17872 (2007).

    CAS  Google Scholar 

  24. S. Mirershadi, S. Z. Mortazavi, A. Reyhani, N. Moniri, and A. J. Novinrooz, Synth. React. Inorg. M, 39, 204 (2009).

    Article  CAS  Google Scholar 

  25. Q. Wang, J. F. Dai, W. X. Li, Z. Q. Wei, and J. L. Jiang, Compos. Sci. Technol., 68, 1644 (2008).

    Article  CAS  Google Scholar 

  26. S. Costa, E. Borowiak-Palen, M. Kruszynska, A. Bachmatiuk, and R. J. Kalenczuk, Mater. Sci.-Poland, 26, 2 (2008).

    Google Scholar 

  27. P. C. Eklund, J. M. Holden, and R. A. Jishi, Carbon, 33, 959 (1995).

    Article  CAS  Google Scholar 

  28. Y. R. Lee, J. Park, Y. Jeonga, and J. S. Park, Fiber. Polym., 19, 2478 (2018).

    Article  CAS  Google Scholar 

  29. A. G. Masyutin, D. V. Bagrov, I. I. Vlasova, I. I. Nikishin, D. V. Klinov, K. A. Sychevskaya, G. E. Onishchenko, and M. V. Erokhina, J. Nanomater., 8, 715 (2018).

    Article  Google Scholar 

  30. J. Alam, A. Khan, M. Alam, and R. Mohan, Mater., 8, 6391 (2015).

    Article  CAS  Google Scholar 

  31. J. Lin and L. Chen, J. Appl. Polym. Sci., 69, 1563 (1998).

    Article  CAS  Google Scholar 

  32. C. Liu, S. B. Chun, P. T. Mather, L. Zheng, E. H. Haley, and E. B. Coughlin, Macromolecules, 35, 9868 (2002).

    Article  CAS  Google Scholar 

  33. F. Li and R. C Larock, J. Appl. Polym. Sci., 84, 1533 (2002).

    Article  CAS  Google Scholar 

  34. D. Hull and T. W. Clyne, “An Introduction to Composite Materials”, 2nd ed., Cambridge University Press, Cambridge, 1996.

    Book  Google Scholar 

  35. S. H. Liao, M. C. Hsiao, C. Y. Yen, C. C. M. Ma, S. J. Lee, A. Su, M. C. Tsai, M. Y. Yen, and P. L. Liu, J. Power Sources, 195, 7808 (2010).

    Article  CAS  Google Scholar 

  36. W. Zhenquing, L. Jingbiao, G. Jianming, S. Xiaoyu, and X. Lidan, J. Polym., 9, 594 (2017).

    Google Scholar 

  37. M. K. Hassaanzadeh-Aghdam and R. Ansari, Compos. Part B Eng., 162, 167 (2019).

    Article  Google Scholar 

  38. L. Tran and J. Kim, Fiber. Polym., 19, 1948 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2019R1A2C2005933), and the Competency Development Program for Industry Specialists of the Korean Ministry of Trade, Industry and Energy (MOTIE) operated by the Korea Institute for Advancement of Technology (KIAT) (No. P0002397, HRD program for Industrial Convergence of Wearable Smart Devices).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jooyong Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, T.T., Kim, J. 4D-Printing — Fused Deposition Modeling Printing and PolyJet Printing with Shape Memory Polymers Composite. Fibers Polym 21, 2364–2372 (2020). https://doi.org/10.1007/s12221-020-9882-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-020-9882-z

Keywords

Navigation