Skip to main content
Log in

Drop-Weight Impact Behaviour of Hybrid Fiber/Epoxy Honeycomb Core Sandwich Composites under Hemi-Spherical Impactor

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Low velocity impact test is conducted on hybrid fiber honeycomb core sandwich panels filled with different energy absorbing materials such as Rohacell, wheat husk and polyurethane foam (PUF) using an instrumented drop-weight impact testing machine as per ASTM D3763-93 standard. Low velocity impact characteristics such as peak load, absorbed energy and damage mechanisms of the sandwich panels are investigated at 17.16 J, 25.75 J, 34.33 J and 42.91 J energy levels by varying the height of the dropping weight. Image processing technique is performed to calculate the impact damage area of the specimens using MATLAB 2016 A. To observe the damage and failure mode in the failed specimen, optical microscopic observation method is used. As increasing the impact energy, fiber fracture at face sheets, core fractures, delamination between hybrid fabric-epoxy layers and indentations failures are perceived by the visual inspection. According to the obtained results, the low velocity properties such as energy absorption capacity, load at initial damage are significantly improved and impact damage area is decreased considerably by the PUF filled core sandwich panels. Thus, this analysis puts forward that PUF filled honeycomb core sandwich panel may be a preferable material in the field of composites to overcome delamination and impact damages and to reduce the weight especially for the applications of advanced aerospace structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. W. Kang, J. K. Kim, S. K. Cheong, and H. S. Kim, Int. J. Modern Phys. B, 20, 4384 (2006).

    Article  Google Scholar 

  2. M. Meo, R. Vignjevic, and G. Marengo, Int. J. Mech. Sci., 47, 1301 (2005).

    Article  Google Scholar 

  3. G. Morada, R. Ouadday, A. Vadean, and R. Boukhili, Compos. Part B: Eng., 114, 418 (2017).

    Article  CAS  Google Scholar 

  4. J. Wang, A. M. Waas, and H. Wang, Compos. Struct., 96, 298 (2013).

    Article  Google Scholar 

  5. D. Zhang, Q. Fei, and P. Zhang, Compos. Struct., 168, 633 (2017).

    Article  Google Scholar 

  6. R. Kolahchi, Aerospace Sci. Technol., 66, 235 (2017).

    Article  Google Scholar 

  7. J. Y. Jing, Q. G. Fu, and R. M. Yuan, Surface Eng., 34, 47 (2018).

    Article  CAS  Google Scholar 

  8. M. S. Zarei, R. Kolahchi, M. H. Hajmohammad, and M. Maleki, Soil Dyn. Earthq. Eng., 103, 76 (2017).

    Article  Google Scholar 

  9. A. Florence and M. A. Jaswin, Mater. Res. Express, 6, 075326 (2019).

    Article  CAS  Google Scholar 

  10. S. Abrate, Appl. Mech. Rev., 44, 155 (1991).

    Article  Google Scholar 

  11. A. Sakly, A. Laksimi, H. Kebir, and S. Benmedakhen, Eng. Fail. Anal., 68, 22 (2016).

    Article  Google Scholar 

  12. M. D. Erickson, A. R. Kallmeyer, and K. G. Kellogg, J. Sandwich Struct. Mater., 7, 245 (2005).

    Article  CAS  Google Scholar 

  13. T. Anderson and E. Madenci, Compos. Struct., 50, 239 (2000).

    Article  Google Scholar 

  14. J. H. Park, S. K. Ha, K. W. Kang, C. W. Kim, and H. S. Kim, J. Mater. Proce. Technol., 201, 425 (2008).

    Article  CAS  Google Scholar 

  15. A. A. Prakash, B. Mohan, A. Rajadurai, and A. Jaswin, Sci. Eng. Compos. Mater., 22, 525 (2015).

    Article  Google Scholar 

  16. M. A. Bhuiyan, M. V. Hosur, and S. Jeelani, Compos. Part B: Eng., 40, 561 (2009).

    Article  Google Scholar 

  17. Y. Chen, S. Hou, K. Fu, X. Han, and L. Ye, Compos. Struct., 168, 322 (2017).

    Article  Google Scholar 

  18. R. S. Jayaram, V. A. Nagarajan, and K. P. Vinod Kumar, J. Sandwich Struct. Mater., 21, 2014 (2018).

    Article  Google Scholar 

  19. U. Caliskan and M. K. Apalak, Compos. Part B: Eng., 112, 158 (2017).

    Article  CAS  Google Scholar 

  20. A. Florence, M. Arockia Jaswin, M. D. Antony Arul Prakash, and R. S. Jayaram, Mater. Rese. Innovat., doi:10.1080/14328917.2019.1640497 (2019).

    Google Scholar 

  21. M. H. Hajmohammad, R. Kolahchi, M. S. Zarei, and M. Maleki, Compos. Struct., 187, 498 (2018).

    Article  Google Scholar 

  22. A. K. J. Al-Shamary, R. Karakuzu, and O. Özdemir, J. Sandwich Struct. Mater., 18, 754 (2016).

    Article  CAS  Google Scholar 

  23. V. N. Burlayenko and T. Sadowski, Comput. Mater. Sci., 45, 658 (2009).

    Article  CAS  Google Scholar 

  24. H. Wang, K. R. Ramakrishnan, and K. Shankar, Mater. Des., 99, 68 (2016).

    Article  CAS  Google Scholar 

  25. S. S. Havaldar, R. S. Sharma, A. P. M. Antony, and M. Bangaru, J. Miner. Mater. Char. Eng., 11, 653 (2012).

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Department of Mechanical Engineering, University Visvesvaraya College of Engineering, Bangalore for their care, concern and support to carry out the lab testing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Arockia Jaswin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Florence, A., Jaswin, M.A. & Pandi, A.P. Drop-Weight Impact Behaviour of Hybrid Fiber/Epoxy Honeycomb Core Sandwich Composites under Hemi-Spherical Impactor. Fibers Polym 21, 1152–1162 (2020). https://doi.org/10.1007/s12221-020-9872-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-020-9872-1

Keywords

Navigation