Skip to main content
Log in

Fabrication and Characterization of Piezoelectric Composite Nanofibers Based on Poly(vinylidene fluoride-co-hexafluoropropylene) and Barium Titanate Nanoparticle

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP)-based composite nanofibers containing different barium titanate (BaTiO3) nanoparticle contents of 10–60 wt% were fabricated by an efficient electrospinning. The piezoelectric performance of PVDF-HFP/BaTiO3 composite nanofibers under a periodic compressional pressure of ∼20 kPa was investigated by considering the BaTiO3 content and the electric poling. The X-ray diffraction patterns revealed the presence of piezoelectric tetragonal BaTiO3 nanoparticles in the composite nanofibers with PVDF β-form crystals. The SEM images demonstrated that the BaTiO3 nanoparticles were dispersed uniformly in the composite nanofibers at relatively low loadings of 10–20 wt%, but they formed aggregates at high loadings of 30–60 wt%. The piezoelectric performance of the composite nanofibers increased with the BaTiO3 content up to 20 wt% and decreased at higher BaTiO3 contents of 30–60 wt%, which results from the trade-off effect between the piezoelectric performance and the dispersibility of BaTiO3 nanoparticles in the composite nanofibers. Accordingly, the composite nanofibers with 20 wt% BaTiO3 exhibited maximum piezoelectric outputs such as voltage of ~9.63 V, current ~0.52 µA, and electric power of ~7892.2 nW. After the electric poling, the piezoelectric performance was further enhanced to ~11.69 V, ~20.56 µA, and ~1115.2 nW, which was high enough to light up a small LED bulb after rectification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Chang, M. Dommer, C. Chang, and L. Lin, Nano Energy, 1, 356 (2012).

    Article  CAS  Google Scholar 

  2. S. Siddiqui, D.-I. Kim, M. T. Nguyen, S. Muhammad, W.-S. Yoon, and N.-E. Lee, Nano Energy, 15, 177 (2015).

    Article  CAS  Google Scholar 

  3. M. A. Hannan, S. Mutashar, S. A. Samad, and A. Hussain, BioMed. Eng. Online, 13, 79 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Z. L. Wang and W. Wu, Angrew. Chem. Int. Ed., 51, 11700 (2012).

    Article  CAS  Google Scholar 

  5. W. Zeng, L. Shu, Q. Li, F. Wang, and X.-M. Tao, Adv. Mat., 36, 5310 (2014).

    Article  CAS  Google Scholar 

  6. C. R. Bowen, H. A. Kim, P. M. Weaver, and S. Dunn, Energy Environ. Sci., 7, 25 (2014).

    Article  CAS  Google Scholar 

  7. R. T. Selvan, Y. J. Ahn, K. J. Kim, and H. Kim, Fiber. Polym, 18, 1898 (2017).

    Article  CAS  Google Scholar 

  8. S.-H. Shin, Y.-H. Kim, M. H. Lee, J.-Y. Jung, J. H. Seol, and J. Nah, ACS Nano, 8, 10844 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. J. Yan and Y. G. Jeong, ACS Appl. Mater. Interfaces, 8, 15700 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. H. Y. Choi and Y. G. Jeong, Compos. Pt. B-Eng., 168, 58 (2019).

    Article  CAS  Google Scholar 

  11. S. Gupta, D. Maurya, Y. Yan, and S. Priya in “Lead-Free Piezoelectrics” (S. Priya and S. Nahm Eds.), p.89, Springer, New York, 2012.

  12. Z.-H. Lin, Y. Yang, J. M. Wu, Y. Liu, F. Zhang, and Z. L. Wang, J. Phys. Chem. Lett., 3, 3599 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. S. K. Mahadeva, K. Walus, and B. Stoeber, ACS Appl. Mater. Interfaces, 6, 7547 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. S.-H. Shin, Y.-H. Kim, M. H. Lee, J.-Y. Jung, and J. Nah, ACS Nano, 8, 2766 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. A. Koka and H. A. Sodano, Nat. Commun., 4, 2682 (2013).

    Article  PubMed  Google Scholar 

  16. J. Yan and Y. G. Jeong, Compos. Sci. Technol., 144, 1 (2017).

    Article  CAS  Google Scholar 

  17. X. Wang, X. Deng, H. Wen, and L. Li, Appl. Phys. Lett., 89, 162902 (2006).

    Article  CAS  Google Scholar 

  18. T. Karaki, K. Yan, T. Miyamoto, and M. Adachi, Japan. J. Appl. Phys., 46, 4 (2007).

    Article  CAS  Google Scholar 

  19. K. I. Park, S. Xu, Y. Liu, G. T. Hwang, S. J. Kang, Z. L. Wang, and K. J. Lee, Nano Lett., 10, 4939 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. J. Briscoe and S. Dunn, Nano Energy, 14, 15 (2015).

    Article  CAS  Google Scholar 

  21. R. A. Whiter, Y. Calahorra, C. Ou, and S. Kar-Narayan, Macromol. Mater. Eng., 301, 1016 (2016).

    Article  CAS  Google Scholar 

  22. J. Yan, M. Liu, Y. G. Jeong, W. Kang, L. Li, Y. Zhao, N. Deng, B. Cheng, and G. Yang, Nano Energy, 56, 662 (2019).

    Article  CAS  Google Scholar 

  23. R. Gregorio Jr., J. Appl. Polym. Sci., 100, 3272 (2006).

    Article  CAS  Google Scholar 

  24. A. Salimi and A. A. Yousefi, Polym. Test., 22, 699 (2003).

    Article  CAS  Google Scholar 

  25. A. J. Lovinger, Science, 220, 1115 (1983).

    Article  CAS  PubMed  Google Scholar 

  26. W. Zhou, X. Jiang, P. Wang, and H. Wang, Fiber. Polym., 14, 100 (2013).

    Article  CAS  Google Scholar 

  27. G. T. Davis, J. E. Mckinney, M. G. Broadhurst, and S. C. Roth, J. Appl. Phys., 49, 4998 (1978).

    Article  CAS  Google Scholar 

  28. D. Farrar, K. Ren, D. Cheng, S. Kim, W. Moon, W. L. Wilson, J. E. West, and S. M. Yu, Adv. Mat., 23, 3954 (2011).

    Article  CAS  Google Scholar 

  29. Y. R. Wang, J. M. Zheng, G. Y. Ren, P. H. Zhang, and C. Xu, Smart Mater. Struct., 20, 045009 (2011).

    Article  CAS  Google Scholar 

  30. J. Fang, H. Niu, H. Wang, X. Wang, and T. Lin, Energy Environ. Sci., 6, 2196 (2013).

    Article  CAS  Google Scholar 

  31. N. T. Tien, T. Q. Trung, Y. G. Seoul, D. I. Kim, and N.-E. Lee, ACS Nano, 5, 7069 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. D. Berlincourt and H. Jaffe, Phys. Rev., 111, 143 (1958).

    Article  CAS  Google Scholar 

  33. H. Nagata, M. Yoshida, Y. Makiuchi, and T. Takenaka, Japan. J. Appl. Phys., 42, 7401 (2003).

    Article  CAS  Google Scholar 

  34. H. Xu and L. Gao, J. Am. Ceram. Soc., 86, 203 (2003).

    Article  CAS  Google Scholar 

  35. K. Uchino, E. Sadanaga, and T. Hirose, J. Am. Ceram. Soc., 72, 1555 (1989).

    Article  CAS  Google Scholar 

  36. B. D. Begg, K. S. Finnie, and E. R. Vance, J. Am. Chem. Soc., 79, 2666 (1996).

    CAS  Google Scholar 

  37. Z. Lazarevic, N. Romcevic, M. Vijatovic, N. Paunovic, M. Rom·cevic, B. Stojanovic, and Z. Dohcevic-Mitrovic, Acta Phys. Pol., A, 115, 808 (2009).

    Article  CAS  Google Scholar 

  38. K. I. Park, M. Lee, Y. Liu, S. Moon, G. T. Hwang, G. Zhu, J. E. Kim, S. O. Kim, D. K. Kim, Z. L. Wang, and K. J. Lee, Adv. Mater., 24, 2999 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. A. Pinczuk, W. Taylor, E. Burstein, and I. Lefkowitz, Solid State Commun., 5, 429 (1967).

    Article  CAS  Google Scholar 

  40. M. DiDomenico Jr., S. H. Wemple, S. P. S. Porto, and R. P. Bauman, Phys. Rev., 174, 522 (1968).

    Article  CAS  Google Scholar 

  41. M. H. Frey and D. A. Payne, Phys. Rev. B, 54, 3158 (1996).

    Article  CAS  Google Scholar 

  42. T. Boccaccio, A. Bottino, G. Capannelli, and P. Piaggio, J. Membrane Sci., 210, 315 (2002).

    Article  CAS  Google Scholar 

  43. D. M. Esterly and B. J. Love, J. Polym. Sci. Part B: Polym. Phys., 42, 91 (2004).

    Article  CAS  Google Scholar 

  44. H. T. Evans, Jr., Acta Cryst., 14, 1019 (1961).

    Article  CAS  Google Scholar 

  45. X. Chen, S. Xu, N. Yao, and Y. Shi, Nano Lett., 10, 2133 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (No. 2016R1D1A1B03932942).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Gyu Jeong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, S.H., Choi, Y.C., Kim, M.S. et al. Fabrication and Characterization of Piezoelectric Composite Nanofibers Based on Poly(vinylidene fluoride-co-hexafluoropropylene) and Barium Titanate Nanoparticle. Fibers Polym 21, 473–479 (2020). https://doi.org/10.1007/s12221-020-9803-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-020-9803-1

Keywords

Navigation