Skip to main content
Log in

The Relationship Between Subjective Pilling Evaluation Results and Detecting Pills and Textural Features in Knitted Fabrics

  • Regular Articles
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The digital image processing studies are used in order to eliminate problems of subjective pilling evaluation. However, these applications did not come to the desired point. The purpose of this research is to put forward with explanations about the reasons for the failures of previous studies in objective pilling evaluation. In this study, three issues were dwelled on. Firstly, data belong to original fabrics (0 turns) were taken into consideration. Secondly, data were standardized using min-max normalization with a feature scaling approach to compare different fabrics. For this process, data after pilling and results belong to original fabrics (0 turns) were taken together. Thirdly, knitted fabrics were separated into different categories according to formed pill types and characteristics after pilling processing. The results were evaluated in the most appropriate category according to the pill’s structure. Two sample fabrics containing appropriate structure and characteristics which were able to explain the three overlooked issues were used. In digital image processing made by paying attention to these mentioned three points, both pill parameters and textual features obtained from digital images were determined. The relationships between these parameters and subjective evaluation results were examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Konda, L. C. Xin, M. Takadera, Y. Okoshi, and K. J. Toriumi, Text. Mach. Soc. Jap., 36, 96 (1990).

    Google Scholar 

  2. C. H. Hsi, R. R. Bresee, and P. A. Annis, J. Text. Inst., 89, 80 (1998a).

    Article  CAS  Google Scholar 

  3. C. H. Hsi, R. R. Bresee, and P. A. Annis, J. Text. Inst., 89, 96 (1998b).

    Article  CAS  Google Scholar 

  4. B. J. Xu, Text. Inst., 88, 488 (1997).

    Article  Google Scholar 

  5. T. J. Kang, D. H. Cho, and S. M. Kim, Text. Res. J., 74, 1013 (2004).

    Article  CAS  Google Scholar 

  6. S. C. Kim and T. J. Kang, Text. Res. J., 75, 801 (2005).

    Article  CAS  Google Scholar 

  7. B. K. Behera and T. E. Mohan, Int. J. Clot. Sci. Tech., 17, 279 (2005).

    Article  Google Scholar 

  8. X. Chen, J. Wang, and L. Li, “In Image and Signal Processing (CISP)”, pp.1903–1906, IEEE, 2011.

  9. S. Kim and C. K. Park, Fiber. Polym., 7, 57 (2006).

    Article  Google Scholar 

  10. I. Jasińska, Fib. Text. East Eur., 17, 73 (2009).

    Google Scholar 

  11. A. D. O. Mendes, P. T. Fiadeiro, R. A. Miguel, and J. M. Lucas, Text. Res. J., 79, 410 (2009).

    Article  CAS  Google Scholar 

  12. A. Cherkassky and A. Weinberg, Text. Res. J., 80, 226 (2010).

    Article  CAS  Google Scholar 

  13. W. Gao, R. Pan, J. Liu, and S. Wang, Indus. Textila, 62, 192 (2011).

    Google Scholar 

  14. M. Eldessouki and M. Hassan, Exp. Syst. Appl., 42, 2098 (2015).

    Article  Google Scholar 

  15. R. Furferi, L. Governi, and Y. Volpe, J. Eng. Fibers Fabrics, 10, 79 (2015).

    Google Scholar 

  16. M. Eldessouki, “Applications of Computer Vision in Fashion and Textiles”, pp.147–187, Woodhead Publishing, 2018.

  17. L. Technikov, M. Tunák, and J. Janáček, J. Text. Inst., 108, 123 (2017).

    Article  Google Scholar 

  18. LineTech Industries, Inc., “PillGrade Operation Manual”, http://tobjackson.synology.me/images/pillgrademanual.pdf (Accessed April 1, 2019).

  19. G. O. Kayseri and E. Kirtay, J. Eng. Fibers Fabrics, 10, 62 (2015).

    Google Scholar 

  20. A. Telli and I. Ozkan, “ITTC-7th International Technical Textiles Congress”, pp.309–312, 2018.

  21. A. Telli and I. Ozkan, Teks. Müh., 112, 313 (2018).

    Article  Google Scholar 

  22. B. Xin, J. Hu, and H. Yan, Text. Res. J., 72, 1057 (2002).

    Article  CAS  Google Scholar 

  23. A. Telli, Teks. ve Kon., 29, 268 (2019).

    Article  Google Scholar 

  24. MathWorks, https://uk.mathworks.com/help/images/texture-analysis-using-the-gray-level-co-occurrence-matrix-glcm.html?s_tid=srchtitle (Accessed September 13, 2019).

  25. MathWorks, https://uk.mathworks.com/help/images/ref/regionprops.html (Accessed September 13, 2019).

  26. M. Eldessouki, H. A. Bukhari, M. Hassan, and K. Qashqary, Fib. Text. East. Eur., 108, 106 (2014).

    Google Scholar 

  27. B. K. Behera and R. Mishra, J. Text. Inst., 97, 147 (2006).

    Article  Google Scholar 

  28. B. K. Behera and J. P. Singh, Fiber. Polym., 15, 2633 (2014).

    Article  CAS  Google Scholar 

  29. Z. Deng, L. Wang, and X. Wang, J. Text. Inst., 102, 1 (2011).

    Article  Google Scholar 

  30. H. C. Abril, M. S. M. Garcia-Verela, Y. M. T. Moreno, and R. F. Navarro, Opti. Eng., 37, 2937 (1998).

    Article  Google Scholar 

  31. M. Hajilari, S. Tofighi, and H. Dabiryan, J. Text. Inst., 107, 849 (2016).

    Article  CAS  Google Scholar 

  32. L. Techniková, M. Tunák, and J. Janáček, J. Ind. J. Fib. Text. Res. (IJFTR), 41, 97 (2016).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdurrahman Telli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Telli, A. The Relationship Between Subjective Pilling Evaluation Results and Detecting Pills and Textural Features in Knitted Fabrics. Fibers Polym 21, 1841–1848 (2020). https://doi.org/10.1007/s12221-020-9552-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-020-9552-1

Keywords

Navigation