Skip to main content
Log in

Effect of Particle Size of Cellulose Nanofibril on the Structure and Property of Polyacrylonitrile (PAN) Membrane by Electrospinning

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Polyacrylonitrile (PAN)/cellulose nanofibril (CNF) nanofiber membranes were successfully prepared by an electrospinning method, in which the amount of CNF kept 1 wt%. The effects of CNF sizes on the morphology and properly of spinning solutions and PAN electrospun nanofiber membrane were systematically investigated by rheological property test, conductivity test, SEM, TG, DSC, contact angle test and mechanical test. The results showed that the viscosity and conductivity of the spinning solution was improved with the increasing of CNF sizes, as the formation of the strong polar interactions of nitrile groups and the hydroxyl groups between PAN and CNF. All the morphology of the PAN/CNF nanofiber membrane exhibited a uniform diameter with no visible beads or beads to the string structure, and the average diameter of the PAN/CNF nanofiber was decreased with the increasing of the CNF size. Moreover, the addition of CNF could improve the thermal stability, mechanical properly, and hydrophilicity of the PAN membrane. And the PAN/CNF-10 nanofiber membrane exhibited the optimal properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. A. Silverio, W. P. Neto, and N. O. Dantas, Ind. Crop. Pr., 44, 427 (2013).

    Article  CAS  Google Scholar 

  2. P. F. Jan, Lagerwall, S. Christina, and M. Salajkova, NPG Asia Mater., 6, 80 (2014).

    Article  Google Scholar 

  3. X. Y. F. Han, C. Xu, S. Jiang, L. Huang, L. Liu, and Z. Xia, Ind. Crop. Pr., 109, 241 (2017).

    Article  Google Scholar 

  4. G. Siqueira, J. Bras, and A. Dufresne, Polymer, 2, 728 (2010).

    Article  CAS  Google Scholar 

  5. A. W. Carpenter, C. F. de Lannoy, and M. R. Wiesner, Environ. Sci. Technol., 49, 5277 (2015).

    Article  CAS  Google Scholar 

  6. S. C. Espinosa, T. Kuhnt, and E. J. Foster, Biomacromolecules, 14, 4 (2013).

    Google Scholar 

  7. M. Mariano, N. E. Kissi, and A. Dufresne, J. Polym. Sci. B Polym. Phys., 52, 791 (2014).

    Article  CAS  Google Scholar 

  8. H. Lu, Y. Gui, and L. Zheng, Food Res. Int., 50, 121 (2013).

    Article  CAS  Google Scholar 

  9. A. Zucchelli, M. L. Focarete, and C. Gualandi, Polym. Adv. Technol., 22, 339 (2015).

    Article  Google Scholar 

  10. N. N. Bui, M. L. Lind, and E. M. Hoek, J. Memb. Sci, 385, 10 (2011).

    Article  Google Scholar 

  11. L. Zhang, A. Aboagye, and A. Kelkar, J. Memb. Sci., 49, 463 (2014).

    Google Scholar 

  12. L. Tijing, J. Choi, S. Lee, S. Kim, and H. Shon, J. Memb. Sci., 453, 435 (2014).

    Article  CAS  Google Scholar 

  13. T. V. Sreekumar and B. G. Min, Adv. Mater, 16, 58 (2004).

    Article  CAS  Google Scholar 

  14. Y. Lu, Y. Li, and S. Zhang, Eur. Polym. J., 49, 3834 (2013).

    Article  CAS  Google Scholar 

  15. A. K. Gupta, D. K. Paliwal, and P. Bajaj, J. Appl. Polym. Sci, 59, 1819 (2015).

    Article  Google Scholar 

  16. S. Kim, Y. S. Kuk, and S. C. Yong, J. Ind. Eng. Chem., 20, 3440 (2014).

    Article  CAS  Google Scholar 

  17. J. Luo, H. Chang, and A. Davijani, Cellulose, 24, 1745 (2017).

    Article  CAS  Google Scholar 

  18. R. Suxia, D. Lili, and Z. Xiuqiang, Materials, 10, 68 (2017).

    Article  Google Scholar 

  19. H. Chang, J. Luo, and H. C. Liu, Polymer, 122, 332 (2017).

    Article  CAS  Google Scholar 

  20. S. Huan, L. Bai, and W. Cheng, Polymer, 92, 25 (2016).

    Article  CAS  Google Scholar 

  21. S. Huan, L. Bai, and W. Cheng, RSCAdv, 5, 50756 (2015).

    CAS  Google Scholar 

  22. S. Huan, L. Bai, and W. Cheng, Biomacromolecules, 19, 1037 (2018).

    Article  CAS  Google Scholar 

  23. T. Lin, H. X. Wang, H. M. Wang, and G. X. Wang, Nanotechnology, 15, 1375 (2004).

    Article  CAS  Google Scholar 

  24. D. Li and Y. N. Xia, Adv. Mater., 16, 1151 (2004).

    Article  CAS  Google Scholar 

  25. V. Favier, H. Chanzy, and J. Y. Cavaille, Macromalecules, 28, 6365 (1995).

    Article  CAS  Google Scholar 

  26. A. Kaboorani, B. Riedl, P. Blancht, M. Fellin, O. Hosseinaei, and S. Wang, Eur. Polym. J., 48, 1829 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Authors are thankful to the granting financial support under Shanghai University of Engineering and Science Talents Zhi Hong Project (2017RC432017), and Shanghai Science and Technology Talent Project (19YF1417900).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xue Yang or Binjie Xin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, W., Yang, X. & Xin, B. Effect of Particle Size of Cellulose Nanofibril on the Structure and Property of Polyacrylonitrile (PAN) Membrane by Electrospinning. Fibers Polym 21, 119–126 (2020). https://doi.org/10.1007/s12221-020-9380-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-020-9380-3

Keywords

Navigation