Skip to main content
Log in

A Core-Shell Spherical Silica Molecularly Imprinted Polymer for Efficient Selective Recognition and Adsorption of Dichlorophen

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

A core-shell surface-imprinted polymer was successfully synthesized on the surface of silica spheres by precipitation polymerization. The polymers were used to selectively identify dichlorophen in complex environmental system. The physical-chemical properties of the silica sphere molecularly imprinted polymers were analyzed by scanning electron microscopy and transmission electron microscopy scans characterization. The adsorption properties of core-shell polymers were examined by adsorption isotherms, kinetics and selectivity experiments. The Langmuir adsorption isotherm well fitted the adsorption experimental data, and an increase of temperature enhanced the adsorption capacity. The maximum binding capacity of imprinted polymers reached 72.46 mg g-1 at 318 K. Meanwhile, the adsorption data of binding experiments were well-fitting by the pseudo-second-order equation. Compared with nonimprinted polymer, the imprinted polymer not only has specific selectivity towards dichlorophen but also has higher adsorption performance. Moreover, via the regeneration experiments, it has been demonstrated that the MIPs have certain stability to the adsorption for the target, which provides a good reference for the adsorption of dichlorophen by the imprinted polymer in water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Suarez, M. Carballa, F. Omil, and J. M. Lema, Rev. Environ. Sci. Biotechnol., 7, 125 (2008).

    Article  CAS  Google Scholar 

  2. N. Gottschall, E. Topp, C. Metcalfe, M. Edwards, M. Payne, S. Kleywegt, P. Russell, and D. R. Lapen, Chemospher., 87, 194 (2012).

    Article  CAS  Google Scholar 

  3. M. Q. Cai, R. Wang, L. Feng, and L. Q. Zhang, Environ. Sci. Pollut. R., 22, 1854 (2015).

    Article  CAS  Google Scholar 

  4. J. L. Liu and M. H. Wong, Environ. Int., 59, 208 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. A. Ghauch and A. Tuqan, J. Hazard. Mater., 164, 665 (2009).

    CAS  Google Scholar 

  6. F. Soltermann, C. Abegglen, C. Götz, and G. U. Von, Environ. Sci. Technol., 50, 9825 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. M. M. Huber, S. Canonica, A. G. Park, and U. V. Gunten, Environ. Sci. Technol., 37, 1016 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Z. H. Huang, Z. L. Liu, L. J. Zhu, and G. M. Akbar, Adv. Mater., 726-731, 2502 (2013).

    Google Scholar 

  9. Z. Zhu, J. Xie, M. Zhang, Q. Zhou, and F. Liu, Environ. Pollut., 214, 524 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. F. Jing, Y. Wei, J. Wang, C. Wu, and H. Shi, Anal. Chim. Acta, 639, 42 (2009).

    Article  CAS  Google Scholar 

  11. O. Ramström and R. J. Ansell, Chirality, 10, 195 (1998).

    Article  Google Scholar 

  12. R. Rodil, J. B. Quintana, and S. Muniateguilorenzo, J. Chromatogr. A., 1216, 2958 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. J. D. Cahill, E. T. Furlong, M. R. Burkhardt, D. Kolpin, and L. G. Anderson, J. Chromatogr. A., 1041, 171 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. L. Ying, L. Xin, C. Jia, C. Dong, J. Qi, and Y. Yuan, Environ. Pollut., 158, 2317 (2010).

    Article  CAS  Google Scholar 

  15. D. Lakshmi, A. Bossi, M. J. Whitcombe, I. Chianella, S. A. Fowler, S. Subrahmanyam, E. V. Piletska, and S. A. Piletsky, Anal. Chem., 81, 3576 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Q. Yang, J. H. Li, X. Y. Wang, H. L. Peng, H. Xiong, and L. X. Chen, Biosens. Bioeletron., 112, 54 (2018).

    Article  CAS  Google Scholar 

  17. X. Y. Wang, S. M. Yu, W. Liu, L. W. Fu, Y. Q. Wang, J. H. Li, and L. X. Chen, ACS Sensors, 3, 378 (2018).

    Article  CAS  PubMed  Google Scholar 

  18. A. L. Medinacastillo, G. Mistlberger, J. F. Fernandezsanchez, A. Seguracarretero, I. Klimant, and A. Fernandezgutierrez, Macromolecules, 43, 55 (2010).

    Article  CAS  Google Scholar 

  19. X. L. Li, J. Chen, and C. F. Yang, Fiber. Polym., 19, 977 (2018).

    Article  CAS  Google Scholar 

  20. L. Chen, S. Xu, and J. Li, Chem. Soc. Rev., 40, 2922 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Y. L. Zhang, J. Zhang, C. M. Dai, X. F. Zhou, and S. G. Liu, Carbohyd. Polym., 97, 809 (2013).

    Article  CAS  Google Scholar 

  22. J. Zhang, Z. Guo, X. Zhi, and H. Tang, Colloid. Surface. A., 418, 174 (2013).

    Article  CAS  Google Scholar 

  23. Z. Adalikaya, S. B. B. Tse, A. Falcimaignecordin, and K. Haupt, Angew. Chem. Int. Edit., 54, 5192 (2015).

    Article  CAS  Google Scholar 

  24. Z. Zhang, L. X. Chen, F. F. Yang, and J. H. Li, RSC Adv., 4, 31507 (2014).

    Article  CAS  Google Scholar 

  25. W. N. Ming, X. Y. Wang, W. H. Lu, Z. Zhang, X. L. Song, J. H. Li, and L. X. Chen, Sensor. Actuat. B-Chem., 238, 1309 (2017).

    Article  CAS  Google Scholar 

  26. J. H. Li, J. Q. Fu, L. Y. Wang, X. Y. Wang, and L. X. Chen, Analyst, 143, 3570 (2018).

    Article  CAS  PubMed  Google Scholar 

  27. W. G. Fan, X. M. Zhang, Y. G. Zhang, P. L. Wang, L. T. Zhang, Z. M. Yin, J. Yao, and W. Xiang, J. Mol. Recognit., 31, 2625 (2018).

    Article  CAS  Google Scholar 

  28. K. K. Zhi, L. L. Wang, Y. G. Zhang, Y. F. Jiang, L. T. Zhang, and A. Yasin, Materials, 11, 777 (2018).

    Article  CAS  PubMed Central  Google Scholar 

  29. A. Anene, R. Kalfat, Y. Chevalier, and S. Hbaieb, Colloid. Surface. A, 497, 293 (2016).

    Article  CAS  Google Scholar 

  30. Y. Shirai, K. Shirai, and N. Tsubokawa, J. Polym. Sci. Pol. Chem., 39, 2157 (2001).

    Article  CAS  Google Scholar 

  31. K. Hua, L. Zhang, Z. Zhang, Y. Guo, and T. Guo, Acta Biomater., 7, 3086 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. M. Guan, W. Liu, Y.L. Shao, H. Y. Huang, and H. X. Zhang, Micropor. Mesopor. Mat., 123, 193 (2009).

    Article  CAS  Google Scholar 

  33. X. W. Kan, Z. R. Geng, Z. L. Wang, and J. J. Zhu, J. Nanpsci. Nanotcchnol., 9, 2008 (2009).

    Article  CAS  Google Scholar 

  34. M. D. Levan and T. Vermeulen, J. Phys. Chem., 85, 3247 (1981).

    Article  CAS  Google Scholar 

  35. J. P. Simonin, Chem. Eng. J., 300, 254 (2016).

    Article  CAS  Google Scholar 

  36. W. S. Cai and R. B. Gupta, Sep. Purif. Technol., 35, 215 (2004).

    Article  CAS  Google Scholar 

  37. S. F. Xu, J. H. Li, and L. X. Chen, J. Mater. Chem., 21, 4346 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao Wei or Jifeng Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, X., Yu, M. & Guo, J. A Core-Shell Spherical Silica Molecularly Imprinted Polymer for Efficient Selective Recognition and Adsorption of Dichlorophen. Fibers Polym 20, 459–465 (2019). https://doi.org/10.1007/s12221-019-8822-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-019-8822-2

Keywords

Navigation