Skip to main content
Log in

New β-Cyclodextrin-Based Microcapsules for Textiles Uses

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In this paper, a novel kind of microcapsules containing 2-ethoxynaphtalene (neroline) was successfully synthesized into polyurethane shells through the interfacial polycondensation of β-cyclodextrin with 4,4’-methylene (bisphenyl isocyanate) (MDI) in direct emulsion. The IR spectroscopy was used, on the one hand to confirm the success of polymerization reaction leading to the polyurethane shell formation, but on the other hand to check the encapsulation efficiency of fragrance that accounts for 40%. Microcapsules’ spherical shape and particle size distributions were revealed by means of optical microscopy, scanning electron microscopy (SEM) observation, and small-angle light scattering measurement. The impregnation of neroline-loaded microcapsules on polyamide knitted fabric was tested as an application method at a yield of around 74%. Adhesion of synthesized microcapsules to textile materials was evaluated through microscopic observations. The durability of the impregnation effect was tested by SEM and UV-visible spectroscopy. Washing fastness test of the impregnated polyamide knitting proved that the loaded microparticles retained their efficiency after more than 35 washing cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Teixeira, O. Rodríguez, S. Rodrigues, I. Martins, and A. E. Rodrigues, AlChE J., 58, 1939 (2012).

    Article  CAS  Google Scholar 

  2. M. M. Specos, J. J. Garcia, J. Tornesello, P. Marino, M. Della Vecchia, M. V. D. Tesoriero, and L. G. Hermida, Trans. R. Soc. Trop. Med. Hyg., 104, 653 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. S. Benita, “Microencapsulation: Methods and Industrial Applications”, 2nd ed., Vol. 158, CRC Press, New York, 2005.

    Book  Google Scholar 

  4. S. Y. Cheng, C. W. M. Yuen, C. W. Kan, and K. K. L. Cheuk, Res. J. Textile Apparel, 12, 41 (2008).

    Article  CAS  Google Scholar 

  5. W. C. Griffin, U. S. Patent, 2566410 (1951).

  6. A. Madene, M. Jacquot, J. Scher, and S. Desobry, Int. J. Food Sci. Technol., 41, 1 (2006).

    Article  CAS  Google Scholar 

  7. S. Šiler-Marinković, D. Bezbradica, and P. Škundrić, Chem. Ind. Chem. Eng. Q., 12, 58 (2006).

    Article  Google Scholar 

  8. S. J. Park, Y. S. Shin, and J. R. Lee, J. Colloid Interface Sci., 241, 502 (2001).

    Article  CAS  Google Scholar 

  9. C. Suryanarayana, K. C. Rao, and D. Kumar, Prog. Org. Coat., 63, 72 (2008).

    Article  CAS  Google Scholar 

  10. T. F. Vandamme, D. Poncelet, and P. Subra-Paternault, “Microencapsulation: Des Sciences Aux Technologies”, Editions Tec & Doc, Lavoisier, 2007.

    Google Scholar 

  11. P. Monllor, M. A. Bonet, and F. Cases, Eur. Polym. J., 43, 2481 (2007).

    Article  CAS  Google Scholar 

  12. G. Nelson, Int. J. Pharm., 242, 55 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. R. Badulescu, V. Vivod, D. Jausovec, and B. Voncina, Carbohydr. Polym., 71, 85 (2008).

    Article  CAS  Google Scholar 

  14. E. Delaye, J. Ind. Text., 1363, 60 (2004).

    Google Scholar 

  15. G. Nelson, Rev. Prog. Color., 31, 57 (2001).

    Article  CAS  Google Scholar 

  16. B. Peña, C. Panisello, G. Aresté, R. Garcia-Valls, and T. Gumí, Chem. Eng. J., 179, 394 (2012).

    Article  CAS  Google Scholar 

  17. S. N. Rodrigues, I. M. Martins, I. P. Fernandes, P. B. Gomes, V. G. Mata, M. F. Barreiro, and A. E. Rodrigues, Chem. Eng. J., 149, 463 (2009).

    Article  CAS  Google Scholar 

  18. M. M. M. Specos, G. Escobar, P. Marino, C. Puggia, M. V. D. Tesoriero, and L. Hermida, J. Ind. Text., 40, 13 (2010).

    Article  CAS  Google Scholar 

  19. Y. Zhang and D. Rochefort, J. Microencapsul., 29, 636 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. H. J. Buschmann, D. Knittel, and E. Schollmeyer, J. Incl. Phenom. Macrocycl. Chem., 40, 169 (2001).

    Article  CAS  Google Scholar 

  21. S. Charumanee, A. Titwan, J. Sirithunyalug, P. Weiss-Greiler, P. Wolschann, H. Viernstein, and S. Okonogi, J. Chem. Technol. Biotechnol., 81, 523 (2006).

    Article  CAS  Google Scholar 

  22. F. Gaudin and N. Sintes-Zydowicz, Colloid Surf. A-Physicochem. Eng. Asp., 331, 133 (2008).

    Article  CAS  Google Scholar 

  23. G. Reineccius and S. Risch, Perfum. Flavor., 11, 1 (1986).

    CAS  Google Scholar 

  24. T. Reineccius, G. Reineccius, and T. Peppard, J. Food Sci., 67, 3271 (2002).

    Article  CAS  Google Scholar 

  25. W. J. Shieh and A. Hedges, J. Macromol. Sci. A: Pure Appl. Chem., 33, 673 (1996).

    Article  Google Scholar 

  26. N. Azizi, Y. Chevalier, and M. Majdoub, Ind. Crops Prod., 52, 150 (2014).

    Article  CAS  Google Scholar 

  27. K. Bouchemal, S. Briançon, E. Perrier, H. Fessi, I. Bonnet, and N. Zydowicz, Int. J. Pharm., 269, 89 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. E. C. Varkey and K. Sreekumar, J. Mater. Sci., 45, 1912 (2010).

    Article  CAS  Google Scholar 

  29. N. Cordeiro, M. N. Belgacem, A. Gandini, and C. P. Neto, Ind. Crops Prod., 6, 163 (1997).

    Article  CAS  Google Scholar 

  30. D. Dieterich, Prog. Org. Coat., 9, 281 (1981).

    Article  CAS  Google Scholar 

  31. E. Jabbari and M. Khakpour, Biomaterials, 21, 2073 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. D. Saihi, I. Vroman, S. Giraud, and S. Bourbigot, React. Funct. Polym., 66, 1118 (2006).

    Article  CAS  Google Scholar 

  33. L. D. Wilson, M. H. Mohamed, and J. V. Headley, J. Colloid Interface Sci., 357, 215 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Y. Matsunami and K. Ichikawa, Int. J. Pharm., 242, 147 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. N. V. N. Jyothi, P. M. Prasanna, S. N. Sakarkar, K. S. Prabha, P. S. Ramaiah, and G. Y. Srawan, J. Microencapsul., 27, 187 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. R. Arshady, Colloid. Polym. Sci., 270, 717 (1992).

    Article  CAS  Google Scholar 

  37. Y. Frere, L. Danicher, and P. Gramain, Eur. Polym. J., 34, 193 (1998).

    Article  CAS  Google Scholar 

  38. K. Hong and S. Park, React. Funct. Polym., 42, 193 (1999).

    Article  CAS  Google Scholar 

  39. E. Jabbari, J. Microencapsul., 18, 801 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. M. D. Kim, R. M. Iskakov, E. O. Batyrbekov, B. A. Zhubanov, and A. Perichaud, Polym. Sci. Ser. A Polym. Phys., 48, 1257 (2006).

    Article  Google Scholar 

  41. S. Mirabedini, I. Dutil, and R. Farnood, Colloid Surf. A-Physicochem. Eng. Asp., 394, 74 (2012).

    Article  CAS  Google Scholar 

  42. R. Pearson and E. Williams, J. Polym. Sci.: Polym. Chem. Ed., 23, 9 (1985).

    CAS  Google Scholar 

  43. F. Salaün, G. Bedek, E. Devaux, D. Dupont, and L. Gengembre, J. Membr. Sci., 370, 23 (2011).

    Article  CAS  Google Scholar 

  44. S. Wagh, S. Dhumal, and A. Suresh, J. Membr. Sci., 328, 246 (2009).

    Article  CAS  Google Scholar 

  45. N. Yan, P. Ni, and M. Zhang, J. Microencapsul., 10, 375 (1993).

    Article  CAS  PubMed  Google Scholar 

  46. R. Arshady, J. Microencapsul., 6, 13 (1989).

    Article  CAS  PubMed  Google Scholar 

  47. L. J. J. M. Janssen and K. te Nijenhuis, J. Membr. Sci., 65, 59 (1992).

    Article  CAS  Google Scholar 

  48. Y. H. Tseng, M. H. Fang, P. S. Tsai, and Y. M. Yang, J. Microencapsul., 22, 37 (2008).

    Article  CAS  Google Scholar 

  49. M. Bhaskar, P. Aruna, R. J. G. Jeevan, and G. Radhakrishnan, Anal. Chim. Acta, 509, 39 (2004).

    Article  CAS  Google Scholar 

  50. N. Azizi, N. Ladhari, and M. Majdoub, Asian J. Text., 1, 130 (2011).

    Article  Google Scholar 

  51. S. Giraud, S. Bourbigot, M. Rochery, I. Vroman, L. Tighzert, R. Delobel, and F. Poutch, Polym. Degrad. Stab., 88, 106 (2005).

    Article  CAS  Google Scholar 

  52. A. Patist, S. S. Bhagwat, K. W. Penfield, P. Aikens, and D. O. Shah, J. Surfactants Deterg., 3, 53 (2000).

    Article  CAS  Google Scholar 

  53. J. Hu, Z. B. Xiao, R. J. Zhou, S. S. Ma, M. X. Wang, and Z. Li, Chin. J. Chem. Eng., 19, 523 (2011).

    Article  CAS  Google Scholar 

  54. R. Mercadé-Prieto and Z. Zhang, J. Microencapsul., 29, 277 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. S. N. Rodrigues, I. Fernandes, I. M. Martins, V. G. Mata, F. Barreiro and A. E. Rodrigues, Ind. Eng. Chem. Res., 47, 4142 (2008).

    Article  CAS  Google Scholar 

  56. M. M. G. Fouda and H. M. Fahmy, Carbohydr. Polym., 86, 625 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This study was funded by the “Ministry of Higher Education and Scientific Research-Tunisia”; Laboratory of Advanced Materials and Interfaces (LAMI; LR-11-S-55).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nedra Azizi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azizi, N., Ben Abdelkader, M., Chevalier, Y. et al. New β-Cyclodextrin-Based Microcapsules for Textiles Uses. Fibers Polym 20, 683–689 (2019). https://doi.org/10.1007/s12221-019-7289-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-019-7289-5

Keywords

Navigation