Skip to main content
Log in

Microencapsulation of Three-Component Thermochromic System for Reversible Color Change and Thermal Energy Storage

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In this study, poly(methyl methacrylate)/thermochromic system (PMMA/TS) and poly(methyl methacrylate-comethacrylic acid)/thermochromic system (P(MMA-co-MA)/TS) microcapsules were prepared by using emulsion polymerization method. The thermochromic system was consisting of crystal violet lactone (CVL) as a leuco dye, bisphenol-A (BPA) as a color developer, and 1-tetradecanol (TD) as a solvent. Microcapsules with different ratio of core/shell were synthesized to examine the effect of core/shell ratio on the properties of microcapsules. Phase transition temperatures and enthalpies, morphology, and particle size distributions of the microcapsules were analyzed using differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and particle size analyzer instruments, respectively. FT-IR spectroscopy was used to prove the presence of the thermochromic system in the microcapsules. UV-Vis absorption bands of the thermochromic system (TS) and microencapsulated thermochromic system (MTS) at both below and above the melting temperature of the solvent were obtained by using a UV-Vis spectrophotometer. The visible color change depending on temperature was monitored for each microcapsule individually by using a digital camera. Spherical morphology and unimodal particle size distribution of the microcapsules were determined by means of SEM photographs and particle size distribution curve analysis. The mean particle sizes of the produced microcapsules varied in a range of 16.0-35.2 μm. The digital camera photographs and the UV-Vis absorbance curves proved that color changed between dark blue and light blue depending upon the temperature change. Meanwhile, the produced microcapsules were proven for an excellent heat storage capacity for thermal energy storage owing to phase changing of the tetradecanol solvent used in the thermochromic system. The melting enthalpy of the microcapsules ranged from 145.5 J/g to 193.4 J/g.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. M. Christie and I. D. Bryant, Color. Technol., 121, 187 (2005).

    Article  CAS  Google Scholar 

  2. I. Malherbe, R. D. Sanderson, and E. Smit, Polymer, 51, 5037 (2010).

    Article  CAS  Google Scholar 

  3. M. A. Chowdhury, B. S. Butola, and M. Joshi, Color. Technol., 129, 232 (2013).

    Article  CAS  Google Scholar 

  4. M. A. Chowdhury, M. Joshi, and B. S. Butola, J. Eng. Fiber Fabr., 9, 107 (2014).

    Google Scholar 

  5. P. Bamfield and M. G. Hutchings, “Chromic Phenomena-Technological Applications of Colour Chemistry”, 2nd ed., pp.47–58, Royal Society of Chemistry, Cambridge, 2010.

    Google Scholar 

  6. W. Ibrahim, Ph.D. Dissertation, Heriot-Watt University, 2012.

  7. W. Ogrodnik, Wire J. Int., 41, 150 (2008).

    Google Scholar 

  8. A. N. Bourque, Ph.D. Dissertation, Dalhousie University, Halifax, Nova Scotia, 2014.

  9. M. Friskovec, R. Kulcar, and K. G. Gunde, Color. Technol., 129, 214 (2013).

    Article  CAS  Google Scholar 

  10. R. Kulcar, M. Friskovec, N. Hauptman, A. Vesel, and M. K. Gunde, Dyes Pigment., 86, 271 (2010).

    Article  CAS  Google Scholar 

  11. R. M. Kantola, H. Kurunmaki, P. K. Vallittu, and L. V. Lassila, J. Prosthet. Dent., 110, 320 (2013).

    Article  CAS  Google Scholar 

  12. R. M. Christie, S. Robertson, and S. Taylor, Colour: Design & Creativity, 1, 1 (2007).

    Google Scholar 

  13. O. Panák, M. Držková, R. Svoboda, and M. K. Gunde, J. Therm. Anal. Calorim., 127, 633 (2017).

    Article  Google Scholar 

  14. M. A. White and M. LeBlanc, J. Chem. Educ., 76, 1201 (1999).

    Article  CAS  Google Scholar 

  15. K. Basnec, M. Hajzeri, and M. K. Gunde, J. Therm. Anal. Calorim., 127, 55 (2017).

    Article  CAS  Google Scholar 

  16. F. Li, Y. Zhao, S. Wang, D. Han, L. Jiang, and Y. Song, J. Appl. Polym. Sci., 112, 269 (2009).

    Article  CAS  Google Scholar 

  17. C. Alkan, S. A. Aksoy, and R. A. Anayurt, Text. Res. J., 85, 2051 (2015).

    Article  CAS  Google Scholar 

  18. S. Demirbag and S. Alay Aksoy, Fiber. Polym., 17, 408 (2016).

    Article  CAS  Google Scholar 

  19. H. Wang, J. Luo, Y. Yang, L. Zhao, G. Song, and G. Tang, Sol. Energy, 139, 591 (2016).

    Article  CAS  Google Scholar 

  20. C. Alkan, A. Sari, A. Karaipekli, and O. Uzun, Sol. Energ. Mat. So. C., 93, 143 (2009).

    Article  CAS  Google Scholar 

  21. A. Sari, C. Alkan, A. Karaipekli, and O. Uzun, Sol. Energ., 83, 1757 (2009).

    Article  CAS  Google Scholar 

  22. S. Alay Aksoy, C. Alkan, M. S. Tözüm, S. Demirbag, R. Altun Anayurt, and Y. Ulcay, J. Text. I., 108, 30 (2017).

    Article  CAS  Google Scholar 

  23. S. Alay, C. Alkan, and F. Göde, Thermochim. Acta, 518, 1 (2011).

    Article  CAS  Google Scholar 

  24. S. Alay, F. Göde, and C. Alkan, J. Appl. Polym. Sci., 120, 2821 (2011).

    Article  CAS  Google Scholar 

  25. H. Zhang and X. Wang, Sol. Energy Mater. Sol. Cells, 93, 1366 (2009).

    Article  CAS  Google Scholar 

  26. E. Önder, N. Sarier, and E. Çimen, Thermochim. Acta, 467, 63 (2008).

    Article  Google Scholar 

  27. S. S. Deveci and G. Basal, Colloid. Polym. Sci., 287, 1455 (2009).

    Article  CAS  Google Scholar 

  28. K. Sawada and H. Urakawa, Dyes Pigment., 65, 45 (2005).

    Article  CAS  Google Scholar 

  29. F. Salaün, E. Devaux, S. Bourbigot, and P. Rumeau, Chem. Eng. J., 155, 457 (2009).

    Article  Google Scholar 

  30. Q. Feng, L. Shen, and D. Li, Appl. Mech. Mater., 184-185, 1124 (2012).

    Article  CAS  Google Scholar 

  31. S. Alay, F. Göde, and C. Alkan, Fiber. Polym., 11, 1089 (2010).

    Article  CAS  Google Scholar 

  32. A. Sari, C. Alkan, D. Kahraman-Dögüsçü, and A. Biçer, Sol. Energy Mater. Sol. Cells, 126, 42 (2014).

    Article  CAS  Google Scholar 

  33. O. Panák, M. Držková, M. Kaplanová, U. Novak, and M. K. Gunde, Dyes Pigment., 136, 382 (2017).

    Article  Google Scholar 

  34. A. Raditoiu, V. Raditoiu, C. A. Nicolae, M. F. Raduly, V. Amariutei, and L. E. Wagner, Dyes Pigment., 134, 69 (2016).

    Article  CAS  Google Scholar 

  35. M. S. Tözüm, S. Alay Aksoy, and C. Alkan, “16th International Symposium on the Recent Progress in Textile Technology and Chemistry”, 4-6 May 2017, Bursa, 2017.

    Google Scholar 

  36. K. Tanaka, T. Seto, A. Watanabe, and T. Hayashida, Bull. Inst. Chem. Res., Kyoto Univ., 37, 281 (1959).

    CAS  Google Scholar 

  37. K. Tanaka, T. Seto, and T. Hayashida, Bull. Inst. Chem. Res., Kyoto Univ., 35, 123 (1958).

    Google Scholar 

  38. L. Ventola, M. Ramirez, T. Calvet, X. Solans, M. A. Cuevas-Diarte, P. Negrier, D. Mondieig, J. C. van Miltenburg, and H. A. J. Oonk, Chem. Mater., 14, 508 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sennur Alay Aksoy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tözüm, M.S., Aksoy, S.A. & Alkan, C. Microencapsulation of Three-Component Thermochromic System for Reversible Color Change and Thermal Energy Storage. Fibers Polym 19, 660–669 (2018). https://doi.org/10.1007/s12221-018-7801-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-018-7801-3

Keywords

Navigation