Skip to main content
Log in

Surface Modification of Wool Fabric with POSS® Nanomaterial

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Wool fabrics, without any surface treatment, can undergo undesirable and irreversible structural changes of wool fiber during washing under heat and mechanical agitation, leading to high shrinkage of wool garments. The traditional method based on polyamide resin can prevent felting and/or shrinkage of wool textiles, but adversely affect the surface hydrophobicity. In the present study, a treatment solution was developed based on TriSilanolIsooctyl POSS® and 3- mercaptopropyl trimethoxysilane, which created wool surface with increased hydrophobicity and highly resistant to shrinkage or felting, as measured after 3×5A wash cycles (equivalent to 24 domestic washes). After the treatment, the wool fabric appeared to be superhydrophobic with a water contact angle of above 150°, compared to the untreated fabric. The treatment has marginal effect on mechanical performance as observed in tensile properties. Scanning electron microscopic images revealed a coating of POSS® on the wool surface. The dyeing of untreated and treated fabrics appeared to be uniform to the naked eye, though spectrophotometric analysis indicated a difference in the extent of dyeing performance. This research showed that POSS®-based treatment is a potentially effective approach for developing shrink-resistant wool textiles with enhanced surface hydrophobicity, in contrast to traditional chlorine/polyamide resin treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Baba, N. Nagasawa, H. Ito, O. Yaida, and T. Miyamoto, Text. Res. J., 71, 885 (2001).

    Article  CAS  Google Scholar 

  2. S. J. Meade, J. P. Caldwell, A. J. Hancock, K. Coyle, J. M. Dyer, and W. G. Bryson, Text. Res. J., 78, 1087 (2008).

    Article  CAS  Google Scholar 

  3. S. M. Borghei, S. Shahidi, M. Ghoranneviss, and Z. Abdolahi, Plasma Sci. Technol., 15, 37 (2013).

    Article  CAS  Google Scholar 

  4. J. M. Cardamone, J. Yao, and A. Nunez, Text. Res. J., 74, 887 (2004).

    Article  CAS  Google Scholar 

  5. A. Hesse, H. Thomas, and H. Hocker, Text. Res. J., 65, 355 (1995).

    Article  CAS  Google Scholar 

  6. N. Onar and M. Sariisik, J. Appl. Polym. Sci., 93, 2903 (2004).

    Article  CAS  Google Scholar 

  7. N. Eslahi, S. Moshggoo, S. K. Azar, F. Dadashian, and N. H. Nejad, J. Ind. Text., 44, 835 (2015).

    Article  CAS  Google Scholar 

  8. G. Sahan, A. Demir, and Y. Gökçe, Fiber. Polym., 17, 1007 (2016).

    Article  CAS  Google Scholar 

  9. R. J. Andrade, Z. N. Weinrich, C. I. Ferreira, D. A. Schiraldi, and J. M. Maia, Polym. Eng. Sci., 55, 1580 (2015).

    Article  CAS  Google Scholar 

  10. H. Sirin, D. Turan, G. Ozkoc, and S. Gurdag, Compos. Pt. B-Eng., 53, 395 (2013).

    Article  CAS  Google Scholar 

  11. Y. Mao, W. Zhou, and J. Xu, J. Appl. Polym. Sci., 132, 42643 (2015).

    Google Scholar 

  12. N. Didane, S. Giraud, E. Devaux, G. Lemort, and G. Capon, Polym. Degrad. Stabil., 97, 2545 (2012).

    Article  CAS  Google Scholar 

  13. J. Zeng, S. Kumar, S. Iyer, D. A. Schiraldi, and R. I. Gonzalez, High Perform. Polym., 17, 403 (2005).

    Article  CAS  Google Scholar 

  14. S. Chen, X. Li, Y. Li, and J. Sun, ACS Nano, 9, 4070 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. H. Zhang and R. N. Lamb, Surf. Eng., 25, 21 (2009).

    Article  CAS  Google Scholar 

  16. A. Khoddami, H. Gong, and G. Ghadimi, Fiber. Polym., 13, 28 (2012).

    Article  CAS  Google Scholar 

  17. R. S. Carran, A. Ghosh, and J. M. Dyer, Appl. Surf. Sci., 287, 467 (2013).

    Article  CAS  Google Scholar 

  18. R. S. Carran and A. Ghosh, J. Appl. Polym. Sci., 132, 42392 (2015).

    Article  CAS  Google Scholar 

  19. A. K. Roy Choudhury (Ed.), “Textile Preparation and Dyeing. Science Publishers, Enfield, New Hampshire, 2006.

    Google Scholar 

  20. D. J. Evans, R. J. Denning, and J. S. Church in “Encyclopedia of Surface and Colloid Science” (A. T. Hubbard Ed.), p.2628, Marcel Dekker Inc., 2002.

  21. A. Ghosh, A. J. Grosvenor, and J. M. Dyer, J. Appl. Polym. Sci., 130, 3105 (2013).

    Article  CAS  Google Scholar 

  22. W. S. Tung and W. A. Daoud, J. Appl. Polym. Sci., 112, 235 (2009).

    Article  CAS  Google Scholar 

  23. L. Rageliene, E. Grebliunaite, R. Treigiene, and V. Mickevicius, Chemija, 23, 69 (2012).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun Ghosh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakker, C., Ghosh, A., Tandon, S. et al. Surface Modification of Wool Fabric with POSS® Nanomaterial. Fibers Polym 19, 2127–2133 (2018). https://doi.org/10.1007/s12221-018-1169-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-018-1169-2

Keywords

Navigation