Skip to main content
Log in

Synthesis of poly(norbornene ester)s by using (η 3-substituted allyl) palladium (NHC) complex as catalyst and investigation of their chemical structure - Glass transition temperature - Refractive index relationships

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The synthesis of poly(norbornene ester)s by using a (η 3-substituted allyl) palladium (N-heterocyclic carbene (NHC)) complex as catalyst was performed and the relationship between chemical structure and glass transition temperature or refractive index of poly(norbornene ester)s was investigated. Norbornene ester monomers were synthesized via esterification of 5-norbornene-2-methyl alcohol and aromatic carboxylic acids. The polymerization catalyst, (η 3-substituted allyl) palladium (NHC) complex, was synthesized according to a published procedure. 1H-NMR spectroscopy was performed to determine chemical structure of monomers and polymers. The molecular weight of the polymers was measured via gel permeation chromatography and the thermal properties were analyzed via thermogravimetric analysis and dynamic mechanical analysis. Refractive indices of polymer films were measured using a prism coupler. Polymers with the highest M n (between 100 kg/mol and 300 kg/mol) were synthesized when the ratio of monomer to catalyst was 2000:1. The glass transition temperature of synthesized polymers was about 100 °C lower than that of conventional norbornene polymers. Among the six polymers of different chemical structures, four polymers exhibited a refractive index of 1.6 or more at a wavelength in the visible light region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Nakamura, H. Fujii, N. Juni, and N. Tsutsumo, Opt. Rev., 13, 104 (2006).

    Article  Google Scholar 

  2. D. W. Mosley, K. Auld, D. Conner, J. Gregory, X. Q. Liu, A. Pedicini, D. Thorsen, M. Wills, G. Khanarian, and E. S. Simon, Proc. SPIE, 6910, 691017 (2008).

    Article  Google Scholar 

  3. R. D. Allen, G. M. Wallraff, D. C. Hofer, and R. R. Kunz, IBM Res. Develop., 41, 95 (1997).

    Article  CAS  Google Scholar 

  4. J. P. Kennedy and H. S. Makowski, J. Marcromol. Sci. Chem., A1, 345 (1967).

    Article  Google Scholar 

  5. N. G. Gaylord, A. B. Deshpande, B. M. Mandal, and M. Martan, J. Marcromol. Sci. Chem., A11, 1053 (1977).

    Article  CAS  Google Scholar 

  6. B. L. Goodall, L. H. Mclntosh Ill, and L. F. Rhodes, Macromol. Symp., 89, 421 (1995).

    Article  CAS  Google Scholar 

  7. P. Schwab, R. H. Grubbs, and J. W. Ziller, J. Am. Chem. Soc., 118, 100 (1996).

    Article  CAS  Google Scholar 

  8. C. Janiak and P. G. Lassahn, Macromol. Rapid Commun., 22, 479 (2001).

    Article  CAS  Google Scholar 

  9. J. Lipian, R. A. Mimna, J. C. Fondran, D. Yandulov, R. A. Shick, B. L. Goodall, and L. F. Rhodes, Marcromolecules, 35, 8969 (2002).

    Article  CAS  Google Scholar 

  10. J. C. Ahn, S. H. Park, K. H. Lee, and K. H. Park, Polymer (Korea), 27, 429 (2003).

    CAS  Google Scholar 

  11. T. F. A. Haselwander, W. Heitz, S. A. Krügel, and J. H. Wendorff, Macromol. Chem. Phys., 197, 3435 (1996).

    Article  CAS  Google Scholar 

  12. U. Peucker and W. Heitz, Macromol. Rapid Commun., 19, 159 (1998).

    Article  CAS  Google Scholar 

  13. Q. Wu and Y. Y. Lu, J. Polym. Sci. Part A: Polym. Chem., 40, 1421 (2002).

    Article  CAS  Google Scholar 

  14. X. Mi, D. M. Xu, W. D. Yan, C. Y. Guo, Y. C. Ke, and Y. L. Hu, Polym. Bull., 47, 521 (2002).

    Article  CAS  Google Scholar 

  15. W. Kaminsky, A. Bark, and M. Arndt, Makromol. Chem. Macromol. Symp., 47, 83 (1991).

    Article  CAS  Google Scholar 

  16. W. Kaminsky and A. Noll, Polym. Bull., 31, 175 (1993).

    Article  CAS  Google Scholar 

  17. F. P. Alt and W. Heitz, Acta. Polym., 49, 477 (1998).

    Article  CAS  Google Scholar 

  18. F. Pelascini, F. Peruch, P. J. Lutz, M. Wesolek, and J. Kress, Macromol. Rapid Commun., 24, 768 (2003).

    Article  CAS  Google Scholar 

  19. W. Massa, N. Faza, H. C. Kang, C. Focke, and W. Heitz, Acta Polym., 48, 432 (1997).

    Article  CAS  Google Scholar 

  20. A. O. Patil, S. Zushma, R. T. Stibrany, S. P. Rucker, and L. M. Wheeler, J. Polym. Sci. Part A: Polym. Chem., 41, 2095 (2003).

    Article  CAS  Google Scholar 

  21. X. H. He, Y. W. Chen, Y. M. Liu, S. X Yu, S. G. Hong, and Q. Wu, J. Polym. Sci. Part A: Polym. Chem., 45, 4733 (2007).

    Article  CAS  Google Scholar 

  22. N. Seehof, C. Mehler, S. Breunig, and W. Risse, J. Mol. Catal., 76, 219 (1992).

    Article  CAS  Google Scholar 

  23. A. S. Abu-Surrah, K. Lappalainen, M. Kettunen, T. Repo, M. Leskelä, H. A. Hodali, and B. Rieger, Macromol. Chem. Phys., 202, 599 (2001).

    Article  CAS  Google Scholar 

  24. B. Berchtold, V. Lozan, P. G. Lassahn, and C. Janiak, J. Polym. Sci. Part A: Polym. Chem., 40, 3604 (2002).

    Article  CAS  Google Scholar 

  25. H. Schnecko, R. Caspary, and G. Degler, Makromol. Chem., 20, 141 (1971).

    Article  CAS  Google Scholar 

  26. F. Blank and C. Janiak, Coord. Chem. Rev., 253, 827 (2009).

    Article  CAS  Google Scholar 

  27. B. G. Shin, M. S. Jang, D. Y. Yoon, and W. Heitz, Macromol. Rapid Commun., 25, 728 (2004).

    Article  CAS  Google Scholar 

  28. M. Yamashita, I. Takamiya, K. Jin, and K. Nozaki, Organometallics, 25, 4588 (2006).

    Article  CAS  Google Scholar 

  29. I. G. Jung, Y. T. Lee, S. Y. Choi, D. S. Choi, Y. K. Kang, and Y. K. Chung, J. Organomet. Chem., 694, 297 (2009).

    Article  CAS  Google Scholar 

  30. E. G. Mamedbeili, T. G. Kyazimova, Z. M. Nagiev, O. B. Abdiev, K. A. Aliev, Russian J. Organic Chem., 45, 74 (2009).

    Article  CAS  Google Scholar 

  31. D. P. Song, Y. G. Li, R. Lu, N. H. Hu, and Y. S. Li, Appl. Organometal. Chem., 22, 333 (2008).

    Article  CAS  Google Scholar 

  32. E. K. Macdonald and M. P. Shaver, Polym. Int., 64, 6 (2015).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Jun Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, D.H., Sunwoo, Y.R., Kim, Y.C. et al. Synthesis of poly(norbornene ester)s by using (η 3-substituted allyl) palladium (NHC) complex as catalyst and investigation of their chemical structure - Glass transition temperature - Refractive index relationships. Fibers Polym 18, 1438–1444 (2017). https://doi.org/10.1007/s12221-017-7372-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-017-7372-8

Keywords

Navigation