Skip to main content
Log in

Rapid fabrication and optimization of silk fibers supported and stabilized MnO2 catalysts

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

We report on the in situ synthesis and stabilization of manganese dioxide (MnO2) onto four different silk yarns (mulberry, tasar, muga and eri silks). A new ultrasound-assisted procedure was used to reduce permanganate (MnO4 ) and yielded MnO2 nanoparticles (NPs) on/in the different silk fibers. Using a factorial design we assessed the influence of the silk type, manganese precursor concentration, sonication time, and temperature. The results indicated no measurable effect of the process parameters on the silk structures, but significant correlation with the rate of degradation of methylene blue (MB) and the fraction of permanganate consumed. Further optimization of the factorial model identified the optimal process conditions for each silks: mulberry (150 min sonication, 20 mM permanganate), eri (360 min, 10 mM), tasar (150 min, 10 mM) and Muga (20 min, 10 mM). The operational stability (successive catalysis) of the optimum hybrids showed good performance over 5 cycles and most importantly reduced direct dye absorption relatively to dye oxidation. Overall, we found that all silks could template the formation and stabilization of different MnO2 polymorphs and yielded catalytic instead of stoichiometric hybrid fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. R. Abbasi and A. Morsali, Ultrason. Sonochem., 17, 704 (2010).

    Article  CAS  Google Scholar 

  2. L. Zhou, J. He, J. Zhang, Z. He, Y. Hu, C. Zhang, and H. He, J. Phys. Chem. C, 115, 16873 (2013).

    Article  Google Scholar 

  3. H. Xu, B. W. Zeiger, and K. S. Suslick, Chem. Soc. Rev., 42, 2555 (2013).

    Article  CAS  Google Scholar 

  4. S. M. Maliyekkal, K. P. Lisha, and T. Pradeep, J. Hazard. Mater., 181, 986 (2010).

    Article  CAS  Google Scholar 

  5. R. J. K. Taylor, M. Reid, J. Foot, and S. A. Raw, Accounts Chem. Res., 38, 851 (2005).

    Article  CAS  Google Scholar 

  6. R. A. Petrie, P. R. Grossl, and R. C. Sims, Environ. Sci. Technol., 36, 3744 (2002).

    Article  CAS  Google Scholar 

  7. J. G. Kim, J. B. Dixon, C. C. Chusuei, and Y. Deng, Soil Sci. Soc. Am. J., 66, 306 (2002).

    Article  CAS  Google Scholar 

  8. R. Nie, J. Shi, S. Xia, L. Shen, P. Chen, Z. Hou, and F.-S. Xiao, J. Mater. Chem., 22, 18115 (2012).

    Article  CAS  Google Scholar 

  9. J. Mei and L. Zhang, RSC Advances, 5, 14843 (2015).

    Article  CAS  Google Scholar 

  10. M. L. Chacón-Patiño, C. Blanco-Tirado, J. P. Hinestroza, and M. Y. Combariza, Green Chem., 15, 2920 (2013).

    Article  Google Scholar 

  11. A. Shaabani, Z. Hezarkhani, and E. Badali, Polyhedron, 107, 176 (2016).

    Article  CAS  Google Scholar 

  12. S. Khanjani and A. Morsali, Ultrason. Sonochem., 20, 413 (2013).

    Article  CAS  Google Scholar 

  13. J. Z. Sostaric, P. Mulvaney, and F. Grieser, J. Chem. Soc. Faraday T., 91, 2843 (1995).

    Article  CAS  Google Scholar 

  14. H. Chen, J. He, C. Zhang, and H. He, J. Phys. Chem. C, 111, 18033 (2007).

    Article  CAS  Google Scholar 

  15. K. Sen and M. Babu K, J. Appl. Polym. Sci., 92, 1098 (2004).

    Article  CAS  Google Scholar 

  16. C. M. Julien, M. Massot, and C. Poinsignon, Spectrochim. Acta A, 60, 689 (2004).

    Article  CAS  Google Scholar 

  17. Y. Zhou, W. Chen, H. Itoh, K. Naka, Q. Ni, H. Yamane, and Y. Chujo, Chem. Comm., 7, 2518 (2001).

    Article  Google Scholar 

  18. E. Kharlampieva, D. Zimnitsky, M. Gupta, K. N. Bergman, D. L. Kaplan, R. R. Naik, and V. V. Tsukruk, Chem. Mater., 21, 2696 (2009).

    Article  CAS  Google Scholar 

  19. M. Kosmulski, J. Colloid Interf. Sci., 337, 439 (2009).

    Article  CAS  Google Scholar 

  20. F. Buciuman, F. Patcas, R. Craciun, and D. R. T. Zahn, Phys. Chem. Chem. Phys., 1, 185 (1999).

    Article  CAS  Google Scholar 

  21. G. A. Kolta, F. M. Abdel Kerim, and A. A. Abdul Azim, Journal of Inorganic and General Chemistry-ZAAC, 384, 260 (1971).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cedric Dicko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, M., Musy, C., Dey, E.S. et al. Rapid fabrication and optimization of silk fibers supported and stabilized MnO2 catalysts. Fibers Polym 18, 1660–1670 (2017). https://doi.org/10.1007/s12221-017-7160-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-017-7160-5

Keywords

Navigation