Skip to main content
Log in

An analytical approach for the compression and recovery behavior of cut pile carpets under constant rate of compression by mechanical models

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Viscoelastic models composing of different combination of spring and dashpot are usually used to explain the mechanical behavior of textile materials. In this study, three different models were analyzed for explaining the compression, decompression and recovery of cut pile carpets under constant rate of compression. The carpet samples were compressed by the Zwick tester under constant rate of compression. The experiments were performed for just one cycle of compression-decompression. Maxwell mechanical model as well as the standard linear and nonlinear three-element models was employed for simulating the compression behavior and recovery of the carpet samples. Curve fitting method based on least square method was used to adapt the experimental data to the theoretical models. The results showed that the three element model consists of a Maxwell body paralleled with a non-linear spring can describe the compression and decompression behavior of more significantly in compression to Maxwell and standard linear models. Several attributes of compression can be described by the model parameters including work of compression, work of recovery and initial modulus. The results also showed that the Maxwell model is not capable of explaining the recovery property of the carpet as it shows some residual deformation after load removal. This is in contrary to the experimental results where all sample recovered to initial thickness after just one cycle of compression-decompression. The standard linear and nonlinear three-element models showed acceptable compliance with the recovery. The result suggests that the nonlinear three-element model provides the best fit for the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Grover, S. Zho, and I. C. Twilly, Text. Res. J., 63, 257 (1993).

    Article  CAS  Google Scholar 

  2. J. Wu, N. Pan, and K. R. Williams, Text. Res. J., 77, 172 (2007).

    Article  CAS  Google Scholar 

  3. L. Vangheluwe and P. Kiekens, Text. Res. J., 67, 671 (1997).

    Article  CAS  Google Scholar 

  4. S. Kumar and V. B. Gupta, Text. Res. J., 48, 429 (1978).

    Article  Google Scholar 

  5. J. D. Ferry, “Viscoelastic Properties of Polymers”, 3rd ed. pp.33–55, John Wiley & Sons, Inc., New York, 1980.

    Google Scholar 

  6. A. J. Schaff and A. A. Ogale, Text. Res. J., 61, 386 (1991).

    Article  CAS  Google Scholar 

  7. L. Vangheluwe, Text. Res. J., 62, 586 (1992).

    Article  Google Scholar 

  8. L. Vangheluwe and P. Kiekens, J. Text. Inst., 87, 296 (1996).

    Article  CAS  Google Scholar 

  9. A. M. Manich, M. H. Ussman, and A. Barella, Text. Res. J., 69, 325 (1999).

    Article  CAS  Google Scholar 

  10. A. M. Manich, P. N. Marino, M. D. De Castellar, M. Saldivia, and R. M. Sauri, J. Appl. Polym. Sci., 76, 2062 (2000).

    Article  CAS  Google Scholar 

  11. B. F. Ju and K. Liu, Mech. Mater., 34, 485 (2002).

    Article  Google Scholar 

  12. V. Urbelis, A. Petrauskas, and A. Vitkauskas, Mater. Sci., 11, 162 (2005).

    Google Scholar 

  13. H. Liu, X. M. Tao, K. F. Choi, and B. G. Xu, Text. Res. J., 80, 403 (2010).

    Article  CAS  Google Scholar 

  14. W. Zurek, M. Chrznowski, W. Sybilska, and I. Jałmużna. J. Achieve. Mater. Manuf. Eng., 43/2, 702 (2010).

    Google Scholar 

  15. A. Asayesh, A. A. A. Jeddi, and P. Ghadimi, Text. Res. J., 79, 1213 (2009).

    Article  CAS  Google Scholar 

  16. A. Asayesh and A. A. A. Jeddi, Text. Res. J., 80, 642 (2010).

    Article  CAS  Google Scholar 

  17. X. Gao, Y. Sun, Z. Meng, and Z. Sun, Mater. Lett., 65, 2228 (2011).

    Article  CAS  Google Scholar 

  18. X. Gao, Y. Sun, Z. Meng, and Z. Sun, Procedia Engineering, 10, 2886 (2011).

    Article  CAS  Google Scholar 

  19. X. Gao, Y. Sun, Z. Meng, and Z. Sun, J. Appl. Polym. Sci., 124, 1160 (2012).

    Article  CAS  Google Scholar 

  20. X. Gao, H. Chen, and S. Sun, Fibers Text., East. Eur., 23, 72 (2015).

    Article  Google Scholar 

  21. S. Jafari and M. Ghane, Fiber. Polym., 17, 651 (2016).

    Article  Google Scholar 

  22. R. Chattopadhyay, B. Kumar, and P. Barik, Fiber. Polym., 16, 1554 (2015).

    Article  Google Scholar 

  23. B. Kumar, A. Das, and R. Alagirusamy, J. Biomech. Eng., 134, 094501 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Ghane.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khavari, S., Ghane, M. An analytical approach for the compression and recovery behavior of cut pile carpets under constant rate of compression by mechanical models. Fibers Polym 18, 190–195 (2017). https://doi.org/10.1007/s12221-017-6691-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-017-6691-0

Keywords

Navigation