Skip to main content
Log in

Microstructures and electrical properties of composite films based on carbon nanotube and para-aramid containing cyano side group

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

We report the microstructures and electrical properties of poly(2-cyano-1,4-phenylene terephthalamide) (cyPPTA)-based composite films including pristine multi-walled carbon nanotube (MWCNT) of 0.3-10.0 wt%, which were manufactured by ultrasonication-based solution mixing and casting techniques. FT-IR spectra of the composite films revealed the existence of specific interaction between cyPPTA and MWCNT. Accordingly, the pristine MWCNTs were found to be dispersed uniformly in the cyPPTA matrix, as confirmed by TEM images. The electrical resistivity of the composite films decreased considerably from ~1010 Ω cm to ~100 Ω cm with the increase of the MWCNT content by forming a conductive percolation threshold at ~0.525 wt%. The composite films with 3.0-10.0 wt% MWCNT contents, which have sufficiently low electrical resistivity of ~102-100 Ω cm, exhibited excellent electric heating performance by attaining high maximum temperatures and electric power efficiency under given applied voltages of 10-100 V. Since the thermal decomposition of the composite films took place at 520-600 °C under air atmosphere, cyPPTA/MWCNT composite films could be used for high performance electric heating, antistatic, and EMI shielding materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Hillermeier, Text. Res. J., 54, 575 (1984).

    Article  CAS  Google Scholar 

  2. M. Jassal and S. Ghosh, Indian J. Fibre Text., 27, 290 (2002).

    CAS  Google Scholar 

  3. S. M. Aharoni, S. A. Curran, and N. S. Murthy, Macromolecules, 25, 4431 (1992).

    Article  CAS  Google Scholar 

  4. L. Yao, K. Kim, and J. Kim, Fiber. Polym., 13, 277 (2012).

    Article  CAS  Google Scholar 

  5. Y. G. Jeong and G. W. Jeon, ACS Appl. Mater. Interfaces, 5, 6527 (2013).

    Article  CAS  Google Scholar 

  6. D. J. Schaefer, R. J. Schadt, K. H. Gardner, V. Gabara, S. R. Allen, and A. D. English, Macromolecules, 28, 1152 (1995).

    Article  CAS  Google Scholar 

  7. Y. Rao, A. J. Waddon, and R. J. Farris, Polymer, 42, 5937 (2001).

    Article  CAS  Google Scholar 

  8. S. Bourbigot and X. Flambard, Fire Mater., 26, 155 (2002).

    Article  CAS  Google Scholar 

  9. T. I. Bair, P. W. Morgan, and F. L. Killian, Macromolecules, 10, 1396 (1977).

    Article  CAS  Google Scholar 

  10. T. J. Oh, S. J. Han, and S. G. Kim, J. Korean Fiber Soc., 33, 814 (1996).

    CAS  Google Scholar 

  11. T. J. Oh and D. I. Shin, J. Korean Fiber Soc., 37, 561 (2000).

    CAS  Google Scholar 

  12. M. J. Yeo, N. D. Gu, E. J. Jang, C. S. Kang, Y. G. Jeong, and D. H. Baik, Text. Sci. Eng., 51, 134 (2014).

    Article  CAS  Google Scholar 

  13. S. J. Yu, D. H. Baik, and Y. G. Jeong, Fiber. Polym., 15, 2447 (2014).

    Article  CAS  Google Scholar 

  14. R. H. Baughman, A. A. Zakhidov, and W. A. de Heer, Science, 297, 787 (2002).

    Article  CAS  Google Scholar 

  15. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science, 306, 666 (2004).

    Article  CAS  Google Scholar 

  16. V. Georgakilas, J. A. Perman, J. Tucek, and R. Zboril, Chem. Rev., 115, 4744 (2015).

    Article  CAS  Google Scholar 

  17. T. W. Chou, L. M. Gao, E. T. Thostenson, Z. G. Zhang, and J. H. Byun, Compos. Sci. Technol., 70, 1 (2010).

    Article  CAS  Google Scholar 

  18. B. P. Grady, J. Polym. Sci. Part B: Polym. Chem., 50, 591 (2012).

    Article  CAS  Google Scholar 

  19. X. Sun, H. Sun, H. Li, and H. Peng, Adv. Mater., 25, 5153 (2013).

    Article  CAS  Google Scholar 

  20. R. M. Mutiso and K. I. Winey, Prog. Polym. Sci., 40, 63 (2015).

    Article  CAS  Google Scholar 

  21. J.-M. Thomassin, I. Huynen, R. Jerome, and C. Detrembleur, Polymer, 51, 115 (2010).

    Article  CAS  Google Scholar 

  22. Y. Sun and G. Shi, J. Polym. Sci. Pt. B-Polym. Phys., 51, 231 (2013).

    Article  CAS  Google Scholar 

  23. T.-W. Lee, S.-E. Lee, and Y. G. Jeong, Compos. Sci. Technol., 131, 77 (2016).

    Article  CAS  Google Scholar 

  24. D. Stauffer and A. Aharon, “Introduction to Percolation Theory”, Taylor & Francis, London, 1994.

  25. F. El-Tantawy, Eur. Polym. J., 37, 565 (2001).

    Article  CAS  Google Scholar 

  26. F. El-Tantawy, K. Kamada, and H. Ohnabe, Mater. Lett., 56, 112 (2002).

    Article  CAS  Google Scholar 

  27. J. Park and Y. G. Jeong, Polymer, 59, 102 (2015).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Gyu Jeong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, S.J., Hwang, EB., Lee, E.B. et al. Microstructures and electrical properties of composite films based on carbon nanotube and para-aramid containing cyano side group. Fibers Polym 18, 342–348 (2017). https://doi.org/10.1007/s12221-017-1126-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-017-1126-5

Keywords

Navigation