Skip to main content
Log in

Polylactic acid/carbon fiber composites: Effects of functionalized elastomers on mechanical properties, thermal behavior, surface compatibility, and electrical characteristics

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In this study, the maleic anhydride grafted styrene-ethylene-butylene-styrene block copolymer (SEBS-g-MA) is used as the compatilizer for polylactic acid (PLA)/carbon fiber (CF) composites. The effects of SEBS-g-MA on the mechanical properties, thermal behavior, interfacial compatibility, and electrical characteristics of composites are then evaluated. The mechanical property tests indicate that when the amount of compatilizer increases, the tensile properties and flexural property of the composites decrease while their impact strength increases. The SEM results show that the compatilizer can decrease the interstices between PLA and CF, and thereby augments their interfacial compatibility. The differential scanning calorimetry (DSC) results confirm that the compatilizer results in a greater crystallization temperature and a greater crystallinity of the composites. The electrical characteristic results indicate that neither PLA nor SEBS-g-MA is not interfered with the conductive network that is constructed by CF, which is exemplified by an average electromagnetic shielding effect of above −30 dB. This study confirms that SEBS-g-MA can improve interfacial compatibility and toughness, as well as attain good electrical characteristics of PLA/CF composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. T. Bachmann, A. C. Johnson, and R. G. J. Edyvean, Int. Biodeter. Biodegr., 86, 225 (2014).

    Article  CAS  Google Scholar 

  2. I. Armentano, N. Bitinis, E. Fortunati, S. Mattioli, N. Rescignano, R. Verdejo, M. A. Lopez-Manchado, and J. M. Kenny, Prog. Polym. Sci., 38, 1720 (2013).

    Article  CAS  Google Scholar 

  3. R. Auras, B. Harte, and S. Selke, Macromol. Biosci., 4, 835 (2004).

    Article  CAS  Google Scholar 

  4. K. Madhavan Nampoothiri, N. R. Nair, and R. P. John, Bioresour. Technol., 101, 8493 (2010).

    Article  CAS  Google Scholar 

  5. J.-M. Raquez, Y. Habibi, M. Murariu, and P. Dubois, Prog. Polym. Sci., 38, 1504 (2013).

    Article  CAS  Google Scholar 

  6. A. K. Bledzki, A. Jaszkiewicz, and D. Scherzer, Compos. Pt. A-Appl. Sci. Manuf., 40, 404 (2009).

    Article  Google Scholar 

  7. Y. F. Buys, T. Aoyama, S. Akasaka, S. Asai, and M. Sumita, Compos. Sci. Technol., 70, 200 (2010).

    Article  CAS  Google Scholar 

  8. Z. Xu, L. Chen, Y. Huang, J. Li, X. Wu, X. Li, and Y. Jiao, Eur. Polym. J., 44, 494 (2008).

    Article  CAS  Google Scholar 

  9. N. G. Karsli and A. Aytac, Mater. Des., 32, 4069 (2011).

    Article  CAS  Google Scholar 

  10. Z. Dai, F. Shi, B. Zhang, M. Li, and Z. Zhang, Appl. Surf. Sci., 257, 6980 (2011).

    Article  CAS  Google Scholar 

  11. M. Gashti, R. Hajiraissi, and M. Gashti, Fiber. Polym., 14, 1324 (2013).

    Article  CAS  Google Scholar 

  12. T.-T. Li, R. Wang, C.-W. Lou, J.-Y. Lin, and J.-H. Lin, Fiber. Polym., 15, 315 (2014).

    Article  CAS  Google Scholar 

  13. G. Salimbeygi, K. Nasouri, and A. Shoushtari, Fiber. Polym., 15, 583 (2014).

    Article  CAS  Google Scholar 

  14. Z. Zhang, F. Zhang, X. Jiang, Y. Liu, Z. Guo, and J. Leng, Fiber. Polym., 15, 2290 (2014).

    Article  CAS  Google Scholar 

  15. L. Zou, C. Lan, X. Li, S. Zhang, Y. Qiu, and Y. Ma, Fiber. Polym., 16, 2158 (2015).

    Article  CAS  Google Scholar 

  16. J. Yang, J. Xiao, J. Zeng, L. Bian, C. Peng, and F. Yang, Fiber. Polym., 14, 759 (2013).

    Article  CAS  Google Scholar 

  17. D. Jiang, L. Liu, F. Zhao, Q. Zhang, S. Sun, J. He, B. Jiang, and Y. Huang, Fiber. Polym., 15, 566 (2014).

    Article  CAS  Google Scholar 

  18. M. Wu, Z. Wu, K. Wang, Q. Zhang, and Q. Fu, Polymer, 55, 6409 (2014).

    Article  CAS  Google Scholar 

  19. P. Ma, D. G. Hristova-Bogaerds, J. G. P. Goossens, A. B. Spoelstra, Y. Zhang, and P. J. Lemstra, Eur. Polym. J., 48, 146 (2012).

    Article  CAS  Google Scholar 

  20. K. A. Afrifah and L. M. Matuana, Macromol. Mater. Eng., 295, 802 (2010).

    Article  CAS  Google Scholar 

  21. H. Wang, X. Sun, and P. Seib, J. Appl. Polym. Sci., 82, 1761 (2001).

    Article  CAS  Google Scholar 

  22. E. Oliaei, B. Kaffashi, and S. Davoodi, J. Appl. Polym. Sci., 133, DOI: 10.1002/app.43104 (2016).

    Google Scholar 

  23. X. Zhang, E. Koranteng, Z. Wu, and Q. Wu, J. Appl. Polym. Sci., 133, DOI: 10.1002/app.42983 (2016).

    Google Scholar 

  24. W. S. Chow, Express Polym. Lett., 6, 503 (2012).

    Article  CAS  Google Scholar 

  25. S. C. Tjonga, S.-A. Xua, R. K.-Y. Lia, and Y.-W. Maic, Compos. Sci. Technol., 62, 2017 (2002).

    Article  Google Scholar 

  26. Y. Y. Leu, Z. A. Mohd Ishak, and W. S. Chow, J. Appl. Polym. Sci., 124, 1200 (2012).

    Article  CAS  Google Scholar 

  27. L. Yin, J. Yin, D. Shi, and S. Luan, Eur. Polym. J., 45, 1554 (2009).

    Article  CAS  Google Scholar 

  28. J. Jiang, L. Su, K. Zhang, and G. Wu, J. Appl. Polym. Sci., 128, 3993 (2012).

    Article  Google Scholar 

  29. G. Radonjic and I. Šmit, Polym. Sci. Pol. Phys., 39, 566 (2001).

    Article  CAS  Google Scholar 

  30. H. Pang, L. Xu, D.-X. Yan, and Z.-M. Li, Prog. Polym. Sci., 39, 1908 (2014).

    Article  CAS  Google Scholar 

  31. M. H. Al-Saleh and U. Sundararaj, Carbon, 47, 1738 (2009).

    Article  CAS  Google Scholar 

  32. N. C. Das, D. Khastgir, T. K. Chaki, and A. Chakraborty, Compos. Pt. A-Appl. Sci. Manuf., 31, 1069 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia-Horng Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hsieh, CT., Pan, YJ., Lou, CW. et al. Polylactic acid/carbon fiber composites: Effects of functionalized elastomers on mechanical properties, thermal behavior, surface compatibility, and electrical characteristics. Fibers Polym 17, 615–623 (2016). https://doi.org/10.1007/s12221-016-5922-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-016-5922-0

Keywords

Navigation