Skip to main content
Log in

Effect of hybrid ratio and laminate geometry on compressive properties of carbon/glass hybrid composites

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Intra-layer and inter-layer hybrid composite laminates were made with epoxy resin and compositions were varied in six different proportions. In-plane compressive mechanical properties were studied using finite element analysis and experiments, and the results found were in good agreement. Properties of intra-layer and inter-layer hybrids were compared with plain carbon/epoxy and plain glass/epoxy composites, and a comparison among themselves was also made. It was found that intra-layer hybrids to some extent exhibit better compressive properties compared to inter-layer hybrids. Percentage enhancement in compressive failure strain was noticed. Negative hybrid effects on compressive strength was noticed for both intra-layer and inter-layer hybrid configurations. It was found that proportion of carbon fiber content plays a key role in determining the compressive properties. According to macro-scale observation all composite laminates failed catastrophically under compressive loading. SEM observation depicted that under compressive loading carbon fibers break first followed by glass fiber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. K. Naik and R. S. Kumar, Compos. Struct., 46, 299 (1999).

    Article  Google Scholar 

  2. C. Dong and I. J. Davies, Mater. Des., 54, 893 (2014).

    Article  CAS  Google Scholar 

  3. I. L. Kalnin, Compos. Mater.: Test. Des. (2nd Conf.), ASTM STP 497, ASTM, pp.551–563 (1972).

    Google Scholar 

  4. M. R. Piggott and B. Harris, J. Mater. Sci., 16, 687 (1981).

    Article  CAS  Google Scholar 

  5. R. C. Novak, Tech. Rep. to NASA Lewis Research Center, NASA-CR-135062, United Technology, 1976.

    Google Scholar 

  6. M. G. Bader and P. W. Manders, J. Mater. Sci., 16, 2246 (1981).

    Article  Google Scholar 

  7. S. Banerjee and B. V. Sankar, Compos. Pt. B-Eng., 58, 318 (2014).

    Article  CAS  Google Scholar 

  8. S. L. Bazhenov, A. M. Kuperman, E. S. Zelenskii, and A. A. Berlin, Compos. Sci. Technol., 45, 201 (1992).

    Article  CAS  Google Scholar 

  9. B. Budiansky and N. A. Fleck, J. Mech. Phys. Solids, 41, 183 (1993).

    Article  Google Scholar 

  10. A. R. Bunsell and B. Harris, Composites, 5, 157 (1974).

    Article  Google Scholar 

  11. P. W. Manders and M. G. Bader, J. Mater. Sci., 16, 2233 (1981).

    Article  CAS  Google Scholar 

  12. I. J. Davies, Adv. Mater. Res., 41, 357 (2008).

    Google Scholar 

  13. C. Dong and I. J. Davies, Mater. Des., 54, 955 (2014).

    Article  CAS  Google Scholar 

  14. K. S. Pandya, Ch. Veerraju, and N. K. Naik, Mater. Des., 32, 4094 (2011).

    Article  CAS  Google Scholar 

  15. G. Kretsis, Composites, 18, 13 (1987).

    Article  CAS  Google Scholar 

  16. R. A. Pike and R. C. Novak, Tech. Rep. NASA-CR-134763, National Aeronautics and Space Administration, Washington, D.C., 1975.

    Google Scholar 

  17. C. Dong, Duong, and I. J. Davies, Polym. Compos., 33, 773 (2012).

    Article  CAS  Google Scholar 

  18. C. Dong and I. J. Davies, Mater. Des., 37, 450 (2012).

    Article  CAS  Google Scholar 

  19. F. Sarasini, J. Tirillò, M. Valente, T. Valente, S. Cioffi, S. Iannace, and L. Sorrentino, Compos. Pt. A-Appl. Sci. Manuf., 47, 109 (2013).

    Article  CAS  Google Scholar 

  20. F. Sarasini, J. Tirillò, M. Valente, T. Valente, S. Cioffi, S. Iannace, and L. Sorrentino, Mater. Des., 49, 290 (2013).

    Article  CAS  Google Scholar 

  21. I. M. De Rosa, F. Marra, G. Pulci, C. Santulli, F. Sarasini, J. Tirillò, and M. Valente, Express Polym Lett., 5, 449 (2011).

    Article  Google Scholar 

  22. R. Park and J. Jang, J. Appl. Polym. Sci., 75, 952 (2000).

    Article  CAS  Google Scholar 

  23. A. Goren and C. Atas, Arch. Mater. Sci. Eng., 34, 117 (2008).

    Google Scholar 

  24. ASTM D3410/D3410M-03, ASTM International, West Conshohocken, PA, 2003. wwwastmorg.

  25. C. Dong, H. A. R. Jayawardena, and I. J. Davies, Compos. Pt. B-Eng., 43, 573 (2012).

    Article  CAS  Google Scholar 

  26. P. N. B. Reis, J. A. M. Ferreira, F. V. Antunes, and J. D. M. Costa, Compos. Pt. A-Appl. Sci. Manuf., 38, 1612 (2007).

    Article  Google Scholar 

  27. Z. Hashin, J. Appl. Mech., 47, 329 (1980).

    Article  Google Scholar 

  28. J. Zhang, K. Chaisombat, S. He, and C. H. Wang, Mater. Des., 36, 75 (2012).

    Article  CAS  Google Scholar 

  29. P. Ren, Z. Zhang, L. Xie, F. Ren, Y. Jin, Y. Di, and C. Fang, Polym. Compos., 31, 2129 (2010).

    Article  CAS  Google Scholar 

  30. S. F. Hwang and C. P. Mao, Compos. Sci. Technol., 61, 1513 (2001).

    Article  Google Scholar 

  31. M. A. Kouchakzadeh and H. Hideki, Compos. Struct., 50, 249 (2000).

    Article  Google Scholar 

  32. S. Y. Fu, Y. W. Mai, B. Lauke, and C. Y. Yue, Mat. Sci. Eng. A-Struct., 323, 326 (2002).

    Article  Google Scholar 

  33. J. W. Giancaspro, C. G. Papakonstantinou, and P. N. Balaguru, J. Eng. Mater. Technol., 132, 02105 (2010).

    Article  Google Scholar 

  34. M. G. Phillips, Composites, 12, 113 (1981).

    Article  Google Scholar 

  35. Y. Zhang, Y. Li, H. Ma, and T. Yu, Compos. Sci. Technol., 88, 172 (2013).

    Article  CAS  Google Scholar 

  36. D. G. Harlow, Reliab. Eng. Syst. Safe, 56, 197 (1997).

    Article  Google Scholar 

  37. H. Fukunaga, T. W. Chou, and H. Fukuda, J. Reinf. Plast. Comp., 3, 145 (1984).

    Article  Google Scholar 

  38. L. Mishnaevsky Jr and G. Dai, Compos. Mater. Sci., 81, 630 (2014).

    Article  Google Scholar 

  39. C. E. Bakis, A. Nanni, J. A. Terosky, and S. W. Koehler, Compos. Sci. Technol., 61, 815 (2001).

    Article  CAS  Google Scholar 

  40. Y. Liang, C. Sun, and F. Ansari, J. Compos. Constr., 8, 70 (2004).

    Article  CAS  Google Scholar 

  41. A. A. J. M. Peijs and J. M. M. De Kok, Composites, 24, 19 (1993).

    Article  CAS  Google Scholar 

  42. M. J. Pitkethly and M. G. Bader, J. Phys. D. Appl. Phys., 20, 315 (1987).

    Article  Google Scholar 

  43. H. A. Al-Qureshi, J. Mater. Process. Tech., 118, 58 (2001).

    Article  CAS  Google Scholar 

  44. S. Das, Oak Ridge National Laboratory, Oak Ridge, TN (2001).

    Google Scholar 

  45. H. Nordin and B. Taljsten, Compos. Pt. B-Eng., 35, 27 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ikbal, H., Wang, Q., Azzam, A. et al. Effect of hybrid ratio and laminate geometry on compressive properties of carbon/glass hybrid composites. Fibers Polym 17, 117–129 (2016). https://doi.org/10.1007/s12221-016-5706-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-016-5706-6

Keywords

Navigation