Skip to main content
Log in

Flexible silk fibroin films for wound dressing

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In the present study, an effort has been made to create dextrose incorporated (5-15 % w/w) flexible silk fibroin films for wound dressing applications. The flexibility of silk fibroin films increases with increase in dextrose content. The elongation at break properties of dextrose modified silk fibroin (DMSF) films increases from 3.2 % to 40 % with increase in dextrose content. The glass transition temperature (Tg) of the films decreases from 176 °C to 155 °C with increase in dextrose content. This shows that dextrose is acting as plasticizer for silk fibroin films. The structural and morphological properties of dextrose modified silk films (DMSF) are characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) scanning electron microscopy (SEM) and atomic force microscopy (AFM). FTIR and XRD studies show that the dextrose content does not affect the crystalline structure of silk fibroin films. The surface roughness of the films also increases with increases in dextrose content in DMSF films. The addition of dextrose enhances the swelling and hydrophilicity of silk fibroin films. The adherence, proliferation and viability of L929 fibroblast cells cultured on DMSF films indicate that it has ability to support cell growth and proliferation as compared to SF film. The 15 % DMSF film showed significantly higher mass loss than SF film after 50 days of incubation in Protease XIV. Further, the data presented here constitute strong evidence that dextrose modified film has the great potential to be utilized as dermal wound dressing material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. L. Williams, L. H. Bannister, M. M. Berry, P. Collins, M. Dyson, J. E. Dussek, and M. W. J. Ferguson, “Grays Anatomy. In: Uninary System”, 38th ed., pp.199–205, Oxford: Churchill Livingstone London, 1995.

    Google Scholar 

  2. B. L. Seals, T. C. Otero, and A. Panitch, Mater. Sci. Eng., R-Rep., 34, 147 (2001).

    Article  Google Scholar 

  3. E. J. Chong, T. T. Phan, I. J. Lim, Y. Z. Zhang, B. H. Bay, S. Ramakrishna, and C. T. Lim, Acta Biomater., 3, 321 (2007).

    Article  CAS  Google Scholar 

  4. M. Sheila, Nature, 445, 874 (2007).

    Article  Google Scholar 

  5. T. M. Quynh, H. Mitomo, N. Nagasawa, Y. Wada, F. Yoshia, and M. Tamada, Eur. Polym. J., 43, 1779 (2007).

    Article  CAS  Google Scholar 

  6. T. M. Wu and C. Y. Wu, Polym. Degrad. Stabil., 91, 2198 (2006).

    Article  CAS  Google Scholar 

  7. H. Mori and M. Tsukada, Rev. Mol. Biotechnol., 74, 95 (2000).

    Article  CAS  Google Scholar 

  8. R. L. Horan, L. K. A. Adam, Y. Wang, J. Huang, J. E. Moreau, D. L. Kaplan, and G. H. Altman, Biomaterials, 26, 3385 (2005).

    Article  CAS  Google Scholar 

  9. L. Meinel, S. Hofmann, V. Karageorgiou, C. Kirker-Head, J. McCool, G. Gronowicz, L. Zichner, R. Langer, G. Vunjak- Novakovic, and D. L. Kaplan, Biomaterials, 26, 147 (2005).

    Article  CAS  Google Scholar 

  10. J. R. Mauney, T. Nguyen, K. Gillen, C. Kirker-Head, J. M. Gimble, and D. L. Kaplan, Biomaterials, 28, 5280 (2007).

    Article  CAS  Google Scholar 

  11. W. H. Sheng, A. H. Gong, M. Z. Li, Y. F. Xie, J. C. Miao, J. C. Yang, H. Y. Jiang, and S. Z. Lu, Chin. J. Biomed. Eng., 24, 277 (2005).

    CAS  Google Scholar 

  12. J. C. Miao, W. H. Sheng, M. Z. Li, Y. F. Xie, A. H. Gong, and J. C. Yang, Key Eng. Mat., 342–343, 257 (2007).

    Article  Google Scholar 

  13. T. L. Liu, J. C. Miao, W. H. Sheng, Y. F. Xie, Q. Huang, Y. B. Shan, J. C. Yang, and J. Zhejiang, Univ.-Sci. B, 11, 10 (2010).

    Article  Google Scholar 

  14. P. Inpanya, A. Faikrua, A. Ounaroon, Anuphan, Sittichokechaiwut, and J. Viyoch, Biomed. Mater., 7, 1 (2012).

    Article  Google Scholar 

  15. A. Vasconcelos, A. C. Gomes, and C. P. Artur, Acta Biomater., 8, 3049 (2012).

    Article  CAS  Google Scholar 

  16. N. Bhardwaj,W. T. Sow, D. Devi, K. W. Ng, B. B. Mandal, and N. J. Cho, Integr. Biol., 7, 53 (2015).

    Article  CAS  Google Scholar 

  17. D. H. Roh, S. Y. Kang, J. Y. Kim, Y. B. Kwon, H. K. Young, K. G. Lee, Y. H. Park, R. M. Baek, C. Y. Heo, J. Choe, and J. H. Lee, J. Mater. Sci. Mater. Med., 17, 547 (2006).

    Article  CAS  Google Scholar 

  18. Z. Karahaliloglu, B. Ercan, E. B. Denkbas, and T. J. Webster, J. Biomed. Mater. Res. Part A, 103, 135 (2015).

    Article  Google Scholar 

  19. Y. Kawahara, K. Furukawa, and T. Yamamoto, Macromol. Mater. Eng., 291, 458 (2006).

    Article  CAS  Google Scholar 

  20. S. Putthanarat, S. Zarkoob, J. Magoshi, J. A. Chen, R. K.Eby, M. Stone, and W. W. Adams, Polymer, 43, 3405 (2002).

    Article  CAS  Google Scholar 

  21. M. Garcia-Fuentes, G. Elisabeth, M. Lorenz, and P. M. Hans, Biomaterials, 29, 633 (2008).

    Article  CAS  Google Scholar 

  22. H. Kweon, H. C. Ha, I. C. Um, and Y. H. Park, J. Appl. Polym. Sci., 80, 928 (2001).

    Article  CAS  Google Scholar 

  23. K. G. Lee, H. Y. Kweon, J. H. Yeo, S. O. Woo, J. H. Lee, and Y. H. Park, J. Appl. Polym. Sci., 93, 2174 (2004).

    Article  CAS  Google Scholar 

  24. S. Lu, X. Wang, Q. Lu, X. Zhang, J. A. Kluge, N. Uppal, F. Omenetto, and D. L. Kaplan, Biomacromolecules, 11, 143 (2010).

    Article  CAS  Google Scholar 

  25. Y. Baimark, P. Srihanam, and Y. Srisuwan, Asian J. Mater. Sci., 1, 29 (2009).

    Article  CAS  Google Scholar 

  26. T. Bourtoom and Songklanakarin, J. Sci. Technol., 30, 149 (2008).

    Google Scholar 

  27. M. Anker, M. Stading, and A. M. Hermansson, J. Agric. Food Chem., 49, 989 (2001).

    Article  CAS  Google Scholar 

  28. U. J. Kim, J. Park, H. J. Kim, M. Wada, and D. L. Kaplan, Biomaterials, 26, 2775 (2005).

    Article  CAS  Google Scholar 

  29. A. Ubaldo, D. P. Ilaria, K. Kesenci, M. Claudio, and M. Antonella, U.S. Patent, 7285637 (2007).

  30. P. Cacciafesta, K. R. Hallam, A. C. Watkinson, G. C. Allen, M. J. Miles, and K. D. Jandt, Surf. Sci., 491, 405 (2001).

    Article  CAS  Google Scholar 

  31. E. S. Gadelmawla, M. M. Koura, T. M. A. Maksoud, I. M. Elewa, and H. H. Soliman, Mater. Process Technol., 123, 133 (2002).

    Article  Google Scholar 

  32. C. Zhang, D. Song, Q. Lu, X. Hu, D. L. Kaplan, and H. Zhu, Biomacromolecules, 13, 2148 (2012).

    Article  CAS  Google Scholar 

  33. M. Tsukada, M. Obo, M. Kato, G. Freddi, and F. J. Zanetti, J. Appl. Polym. Sci., 60, 1619 (1996).

    Article  CAS  Google Scholar 

  34. A. P. Negri, H. J. Cornell, and D. E. Rivett, Text. Res. J., 63, 109 (1993).

    Article  CAS  Google Scholar 

  35. J. Magoshi and S. Nakamura, J. Appl. Polym. Sci., 19, 1013 (1975).

    Article  CAS  Google Scholar 

  36. X. Hu, D. L. Kaplan, and P. Cebe, Macromolecules, 39, 6161 (2006).

    Article  CAS  Google Scholar 

  37. Q. Yuan, J. Yao, L. Huang, X. Chen, and Z. Shao, Polymer, 51, 6278 (2010).

    Article  CAS  Google Scholar 

  38. B. Yang, W. M. Huang, C. Li, and J. H. Chor, Eur. Polym. J., 41, 1123 (2005).

    Article  CAS  Google Scholar 

  39. C. Ohkuma, K. Kawai, C. Viriyarattanasak, T. Mahawanich, S. Tantratian, and R. Takai, Food Hydrocolloids, 22, 255 (2008).

    Article  CAS  Google Scholar 

  40. A. M. Goula, T. D. Karapantsios, D. S. Achilias, and K. G. Adamopoulos, J. Food Eng., 85, 73 (2008).

    Article  Google Scholar 

  41. R. Surana, L. Randall, A. Pyne, N. M. Vemuri, and R. Suryanarayanan, Pharm. Res., 20, 1647 (2003).

    Article  CAS  Google Scholar 

  42. N. V. Bhat and S. M. Ahirrao, J. Polym. Sci. Pol. Chem. 21, 1273 (1983).

    Article  CAS  Google Scholar 

  43. E. A. Wojciechowska and W. A. Wlochowicz, J. Mol. Struct., 511, 307 (1999).

    Article  Google Scholar 

  44. A. Vasconcelos, G. Freddi, and A. Cavaco-Paulo, Biomacromolecules, 9, 1299 (2008).

    Article  CAS  Google Scholar 

  45. S. E. Wharram, X. Zhang, D. L. Kaplan, and S. P. Mccarthy, Macromol. Biosci., 10, 246 (2010).

    Article  CAS  Google Scholar 

  46. A. R. Chandrasekaran, J. Venugopal, S. Sundarrajan, and S. Ramakrishna, Biomed. Mater., 6, 015001 (2011).

    Article  Google Scholar 

  47. M. Rajput, N. Bhandaru, A. Barui, A. Chaudhary, R. R. Paul, R. Mukherjee, and J. Chatterjee, RSC Adv., 4, 44674 (2014).

    Article  CAS  Google Scholar 

  48. M. J. Dalby, D. Giannaras, M. O. Riehle, N. Gadegaard, S. Affrossman, and A. S. Curtis, Biomaterials, 25, 77 (2004).

    Article  CAS  Google Scholar 

  49. R. L. Horan, K. Antle, A. L. Collette, Y. Wang, J. Huang, J. E. Moreau, V. Volloch, D. L. Kaplan, and G. H. Altman, Biomaterials, 17, 3385 (2005).

    Article  Google Scholar 

  50. M. Li, M. Ogiso, and N. Minoura, Biomaterials, 2, 357 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roli Purwar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, C.M., Purwar, R., Kannaujia, R. et al. Flexible silk fibroin films for wound dressing. Fibers Polym 16, 1020–1030 (2015). https://doi.org/10.1007/s12221-015-1020-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-015-1020-y

Keywords

Navigation