Skip to main content
Log in

Interplay of liquid-liquid and solid-liquid phase separation mechanisms in porosity and polymorphism evolution within poly(vinylidene fluoride) nanofibers

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Porosity and polymorphism evolution within poly(vinylidene fluoride) (PVDF) nanofibers is discussed in relation to interplay of liquid-liquid (L-L) and solid-liquid (S-L) phase separation mechanisms. To this end, poly(vinylidene fluoride) (PVDF) solutions composed of nonvolatile solvents, dimethylformamide (DMF) and N-methylpyrrolidone (NMP), are subjected to electrospinning under environmental conditions of constant temperature (T=20 °C) and different levels of relative humidity (RH) ranging from 20 to 80 %. It is demonstrated that bead appearance, fiber diameter, porosity formation and polymorphism evolution is strongly affected by L-L phase inversion. Increasing RH as well as size of L-L miscibility gap in the ternary phase diagram of nonsolvent (water)/solvent (DMF or NMP)/polymer (PVDF) reduces time required to induce L-L demixing as verified by calculated mass transfer pathways. Therefore, bead-free fibers of larger diameters are expected, meanwhile, growth of β-phase crystals is suppressed. This is why fibers electrospun from DMF-based solution contain less β-phase crystals at high values of RH. In contrast, for solutions composed of NMP, jet stretching due to whipping instability plays pivotal role to form fiber structure as a result of delayed L-L demixing with respect to S-L demixing at high RH, 80 %. Furthermore, retarded L-L demixing in NMP-based systems destabilizes fiber formation at low humid environment which can be enhanced by addition a volatile solvent such as acetone. Additionally, more evidence for increment of β-phase formation with increasing working distance (w.d.) at constant RH is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. W. F. Leung, C. H. Hung, and P. T. Yuen, Sep. Purif. Technol., 71, 30 (2010).

    Article  CAS  Google Scholar 

  2. Z. H. Liu, C. T. Pan, L. W. Lin, and H. W. Lai, Sens. Actuator A-Phys., 193, 13 (2013).

    Article  CAS  Google Scholar 

  3. L. Yu and P. Cebe, Polymer, 50, 2133 (2009).

    Article  CAS  Google Scholar 

  4. T. J. Sill and H. A. V. Recum, Biomaterials, 29, 1989 (2008).

    Article  CAS  Google Scholar 

  5. Y. Miyauchi, B. Ding, and S. Shiratori, Nanotechnology, 17, 5151 (2006).

    Article  CAS  Google Scholar 

  6. B. Ding, J. Lin, X. Wang, J. Yu, J. Yang, and Y. Cai, Soft Matter, 7, 8376 (2011).

    Article  CAS  Google Scholar 

  7. Y. Zhang, J. Li, G. An, and X. He, Sens. Actuator B-Chem. 144, 43 (2010).

    Article  CAS  Google Scholar 

  8. A. C. Patel, S. Li, C. Wang, W. Zhang, and Y. Wei, Chem. Mat., 19, 1231 (2007).

    Article  CAS  Google Scholar 

  9. R. Ramaseshan and S. Ramakrishna, J. Am. Ceram. Soc., 90, 1836 (2007).

    Article  CAS  Google Scholar 

  10. J. Lin, B. Ding, J. Yang, J. Yu, and G. Sun, Nanoscale, 4, 176 (2012).

    Article  CAS  Google Scholar 

  11. J. Lin, Y. Shang, B. Ding, J. Yang, J. Yu, and S. S. Al-Deyab, Mar. Pollut. Bull., 64, 347 (2012).

    Article  CAS  Google Scholar 

  12. B. Sun, Y. Z. Long, H. D. Zhang, M. M. Li, J. L. Duvail, X. Y. Jiang, and H. L. Yin, Prog. Polym. Sci., 39, 862 (2014).

    Article  CAS  Google Scholar 

  13. Y. Dong, J. Kong, S. L. Phua, C. Zhao, N. L. Thomas, and X. Lu, Appl. Mater. Interf., 6, 14087 (2014).

    Article  CAS  Google Scholar 

  14. L. Ren, V. Pandit, J. Elkin, T. Denman, J. A. Cooper, and S. P. Kotha, Nanoscale, 5, 2337 (2013).

    Article  CAS  Google Scholar 

  15. S. Mahalingam and M. Edirisinghe, Macromol. Rapid Commun. 34, 1134 (2013).

    Article  CAS  Google Scholar 

  16. B. T. Raimi-Abraham, S. Mahalingam, M. Edirisinghe, and D. Q. M. Craig, Mater. Sci. Eng. C-Mater. Bio. Appl., 39, 168 (2014).

    Article  CAS  Google Scholar 

  17. C. J. Luo, S. D. Stoyanov, E. Stride, E. Pelan, and M. Edirisinghe, Chem. Soc. Rev., 41, 4708 (2012).

    Article  CAS  Google Scholar 

  18. A. Formhals, U.S. Patent, 1975504 (1934).

    Google Scholar 

  19. M. M. Hohman, M. Shin, G. Rutledge, and M. P. Brenner, Phys. Fluids, 13, 2201 (2001).

    Article  CAS  Google Scholar 

  20. S. Megelski, J. S. Stephens, D. Bruce Chase, and J. F. Rabolt, Macromolecules, 35, 8456 (2002).

    Article  CAS  Google Scholar 

  21. S. A. Theron, E. Zussman, and A. L. Yarin, Polymer, 45, 2017 (2004).

    Article  CAS  Google Scholar 

  22. T. Jarusuwannapoom, W. Hongrojjanawiwat, S. Jitjaicham, L. Wannatong, M. Nithitanakul, C. Pattamaprom, P. Koombhongse, R. Rangkupan, and P. Supaphol, Eur. Polym. J., 41, 409 (2005).

    Article  CAS  Google Scholar 

  23. J. H. Yu, S. V. Fridrikh, and G. C. Rutledge, Polymer, 47, 4789 (2006).

    Article  CAS  Google Scholar 

  24. S. L. Shenoy, W. D. Bates, H. L. Frisch, and G. E. Wnek, Polymer, 46, 3372 (2005).

    Article  CAS  Google Scholar 

  25. W. Liu, C. Huang, and X. Jin, Nanoscale Res. Lett., 9, 350 (2014).

    Article  Google Scholar 

  26. C. L. Pai, M. C. Boyce, and G. C. Rutledge, Macromolecules, 42, 2102 (2009).

    Article  CAS  Google Scholar 

  27. S. Tripatanasuwan, Z. Zhong, and D. H. Reneker, Polymer, 48, 5742 (2007).

    Article  CAS  Google Scholar 

  28. H. Fashandi and M. Karimi, Polymer, 53, 5832 (2012).

    Article  CAS  Google Scholar 

  29. H. Fashandi and M. Karimi, Fiber. Polym., 15, 1375 (2014).

    Article  CAS  Google Scholar 

  30. H. Fashandi and M. Karimi, Thermochim. Acta, 547, 38 (2012).

    Article  CAS  Google Scholar 

  31. H. Fashandi and M. Karimi, Ind. Eng. Chem. Res., 53, 235 (2014).

    Article  CAS  Google Scholar 

  32. J. Zheng, H. Zhang, Z. Zhao, and C. C. Han, Polymer, 53, 546 (2012).

    Article  CAS  Google Scholar 

  33. L. Huang, N. N. Bui, S. S. Manickam, and J. R. McCutcheon, J. Polym. Sci. Part B: Polym. Phys., 49, 1734 (2011).

    Article  CAS  Google Scholar 

  34. M. Bognitzki, W. Czado, T. Frese, A. Schaper, M. Hellwig, M. Steinhart, A. Greiner, and J. H. Wendorff, Adv. Mater., 13, 70 (2001).

    Article  CAS  Google Scholar 

  35. J. Lin, B. Ding, J. Yu, and Y. Hsieh, ACS Appl. Mater. Interfaces, 2, 521 (2010).

    Article  CAS  Google Scholar 

  36. A. Celebioglu and T. Uyar, Mater. Lett., 65, 2291 (2011).

    Article  CAS  Google Scholar 

  37. Y. Z. Zhang, Y. Feng, M. Huang, S. Ramakrishna, and C. T. Lim, Nanotechnology, 17, 901 (2006).

    Article  CAS  Google Scholar 

  38. G. Ma, D. Yang, and J. Nie, Polym. Adv. Technol., 20, 147 (2009).

    Article  CAS  Google Scholar 

  39. M. Peng, D. Li, L. Shen, Y. Chen, Q. Zheng, and H. Wang, Langmuir, 22, 9368 (2006).

    Article  CAS  Google Scholar 

  40. J. T. McCann, M. Marquez, and Y. Xia, J. Am. Chem. Soc., 128, 1436 (2006).

    Article  CAS  Google Scholar 

  41. A. Gupta, C. D. Saquing, M. Afshari, A. E. Tonelli, S. A. Khan, and R. Kotek, Macromolecules, 42, 709 (2009).

    Article  CAS  Google Scholar 

  42. P. Dayal, J. Liu, S. Kumar, and T. Kyu, Macromolecules, 40, 7689 (2007).

    Article  CAS  Google Scholar 

  43. Z. Qi, H. Yu, Y. Chen, and M. Zhu, Mater. Lett., 63, 415 (2009).

    Article  CAS  Google Scholar 

  44. X. Yu, H. Xiang, Y. Long, N. Zhao, X. Zhang, and J. Xu, Mater. Lett., 64, 2407 (2010).

    Article  CAS  Google Scholar 

  45. Y. A. Seo, H. R. Pant, R. Nirmala, J. H. Lee, K. G. Song, and H. Y. Kim, J. Porous Mat., 19, 217 (2012).

    Article  CAS  Google Scholar 

  46. H. J. Lee, B. Jung, Y. S. Kang, and H. Lee, J. Membr. Sci., 245, 103 (2004).

    Article  CAS  Google Scholar 

  47. H. Matsuyama, M. Teramoto, R. Nakatani, and T. Maki, J. Appl. Polym. Sci., 74, 159 (1999).

    Article  CAS  Google Scholar 

  48. Y. Yip and A. J. McHugh, J. Membr. Sci., 271, 163 (2006).

    Article  CAS  Google Scholar 

  49. D. Bouyer, W. Werapun, C. Pochat-Bohatier, and A. Deratani, J. Membr. Sci., 349, 97 (2010).

    Article  CAS  Google Scholar 

  50. J. T. Tsai, Y. S. Su, D. M. Wang, J. L. Kuo, J. Y. Lai, and A. Deratani, J. Membr. Sci., 362, 360 (2010).

    Article  CAS  Google Scholar 

  51. T. H. Young, D. J. Lin, J. J. Gau, W. Y. Chuang, and L. P. Cheng, Polymer, 40, 5011 (1999).

    Article  CAS  Google Scholar 

  52. X. Li, Y. Wang, X. Lu, and C. Xiao, J. Membr. Sci., 320, 477 (2008).

    Article  CAS  Google Scholar 

  53. L. P. Cheng, Macromolecules, 32, 6668 (1999).

    Article  CAS  Google Scholar 

  54. L. P. Cheng, D. J. Lin, C. H. Shin, A. H. Dwan, and C. C. Gryte, J. Polym. Sci.. Pt. B-Polym. Phys., 37, 2079 (1999).

    Article  CAS  Google Scholar 

  55. F. Liu, N. Awanis Hashim, Y. Liu, M. R. Moghareh Abed, and K. Li, J. Membr. Sci., 375, 1 (2011).

    Article  CAS  Google Scholar 

  56. S. W. Choi, J. R. Kim, Y. R. Ahn, S. M. Jo, and E. J. Cairns, Chem. Mat., 19, 104 (2007).

    Article  CAS  Google Scholar 

  57. Y. Yang, A. Centrone, L. Chen, F. Simeon, T. A. Hatton, and G. C. Rutledge, Carbon, 49, 3395 (2011).

    Article  CAS  Google Scholar 

  58. H. Na, P. Chen, Sh. Ch. Wong, S. Hague, and Q. Li, Polymer, 53, 2736 (2012).

    Article  CAS  Google Scholar 

  59. M. Wang, D. Fang, N. Wang, S. Jiang, J. Nie, Q. Yu, and G. Ma, Polymer, 55, 2188 (2014).

    Article  CAS  Google Scholar 

  60. Q. Li, S. Xi, and X. Zhang, J. Cult. Herit., 15, 359 (2014).

    Article  Google Scholar 

  61. L. Yilmaz and A. J. McHugh, J. Appl. Polym. Sci., 31, 997 (1986).

    Article  CAS  Google Scholar 

  62. F. W. Altena and C. A. Smolders, Macromolecules, 15, 1491 (1982).

    Article  CAS  Google Scholar 

  63. A. Bottino, G. Camera-Roda, G. Capannelli, and S. Munari, J. Membr. Sci., 57, 1 (1991).

    Article  CAS  Google Scholar 

  64. M. Karimi, W. Albrecht, M. Heuchel, M. H. Kish, J. Frahn, Th. Weigel, D. Hofmann, H. Modarress, and A. Lendlein, J. Membr. Sci., 265, 1 (2005).

    Article  CAS  Google Scholar 

  65. C. S. Tsay and A. J. McHugh, J. Polym. Sci. Pt. B-Polym. Phys., 28, 1327 (1990).

    Article  CAS  Google Scholar 

  66. C. R. Wilke and P. Chang, AIChE J., 1, 264 (1955).

    Article  CAS  Google Scholar 

  67. H. Y. Lo, D. L. Carroll, and L. I. Stiel, J. Chem. Eng. Data, 11, 540 (1966).

    Article  CAS  Google Scholar 

  68. S. U. Hong, Ind. Eng. Chem. Res., 34, 2536 (1995).

    Article  CAS  Google Scholar 

  69. L. Zeman and G. Tkacik, J. Membr. Sci., 36, 119 (1988).

    Article  CAS  Google Scholar 

  70. P. Van De Witte, P. J. Dijkstra, J. W. A. van Den Berg, and J. Feijen, J. Polym. Sci. Pt. B-Polym. Phys., 35, 763 (1997).

    Article  Google Scholar 

  71. L. Wannatong, A. Sirivat, and P. Supaphol, Polym. Int., 53, 1851 (2004).

    Article  CAS  Google Scholar 

  72. http://www.microkat.gr/msdspd90-99/N-Methyl-2-pyrrolidone. htm

  73. H. Caquineau, P. Menut, A. Deratani, and C. Dupuy, Polym. Eng. Sci., 43, 798 (2003).

    Article  CAS  Google Scholar 

  74. K. H. Lee, H. Y. Kim, H. J. Bang, Y. H. Jung, and S. G. Lee, Polymer, 44, 4029 (2003).

    Article  CAS  Google Scholar 

  75. G. Eda and S. Shivkumar, J. Appl. Polym. Sci., 106, 475 (2007).

    Article  CAS  Google Scholar 

  76. P. Martins, A. C. Lopes, and S. Lanceros-Mendez, Prog. Polym. Sci., 39, 683 (2014).

    Article  CAS  Google Scholar 

  77. W. A. Yee, M. Kotaki, Y. Liu, and X. Lu, Polymer, 48, 512 (2007).

    Article  CAS  Google Scholar 

  78. R. Greorio and M. Cestari, J. Polym. Sci. Pt. B-Polym. Phys., 32, 859 (1994).

    Article  Google Scholar 

  79. R. E. Sonntag, C. Borgnakke, and G. J. van Wylen, “Fundamentals of Thermodynamics”, 6th ed., pp.146–147, Wiley: United States of America, 2003.

    Google Scholar 

  80. http://www.engineeringtoolbox.com/density-air-d_680.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Fashandi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fashandi, H., Yegane, A. & Abolhasani, M.M. Interplay of liquid-liquid and solid-liquid phase separation mechanisms in porosity and polymorphism evolution within poly(vinylidene fluoride) nanofibers. Fibers Polym 16, 326–344 (2015). https://doi.org/10.1007/s12221-015-0326-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-015-0326-0

Keywords

Navigation