Skip to main content
Log in

Ground State and Bounded State Solutions for a Critical Stationary Maxwell System Arising in Electromagnetism

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

The aim of this paper is to establish the existence and multiplicity of bounded state solutions for a critical (p(x), q(x))-curl system which arises in electromagnetism. The existence of nontrivial bounded state solutions is first obtained by applying the mountain pass lemma. Then the existence of ground state solutions is studied by restricting the analysis to the Nehari manifold. Furthermore, under some suitable assumptions, we prove that the mountain pass solution is actually a ground state solution. Finally, the existence of infinitely many solutions is investigated by using the genus theory combined with a truncated argument. The results obtained in this paper develop and complement several contributions concerning the p-curl operator and we focus on new existence results which are due to the presence of nonhomogeneous (p(x), q(x))-curl operator and critical nonlinearity. To the best of our knowledge, our results are new even in the semilinear case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

Code Availability

Not applicable.

References

  1. Ambrosetti, A., Rabinowitz, P.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14, 349–381 (1973)

    Article  MathSciNet  Google Scholar 

  2. Antontsev, S., Miranda, F., Santos, L.: Blow-up and finite time extinction for \(p(x, t)\)-curl systems arising in electromagnetism. J. Math. Anal. Appl. 440, 300–322 (2016)

    Article  MathSciNet  Google Scholar 

  3. Antontsev, S., Mirandac, F., Santos, L.: A class of electromagnetic \(p\)-curl systems: blow-up and finite time extinction. Nonlinear Anal. 75, 3916–3929 (2012)

    Article  MathSciNet  Google Scholar 

  4. Aubin, J.P., Ekeland, I.: Applied Nonlinear Analysis. Wiley Interscience Publications, Pure Appl. Math. (1984)

    Google Scholar 

  5. Autuori, G., Fiscella, A., Pucci, P.: Stationary Kirchhoff problems involving a fractional operator and a critical nonlinearity. Nonlinear Anal. 125, 699–714 (2015)

    Article  MathSciNet  Google Scholar 

  6. Azorero, J.G., Alonso, I.P.: Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term. Trans. Amer. Math. Soc. 323, 877–895 (1991)

    Article  MathSciNet  Google Scholar 

  7. Baldelli, L., Brizi, Y., Filippucci, R.: Multiplicity results for \((p,q)\)-Laplacian equations with critical exponent in RN and negative energy. Calc. Var. Partial Differential Equations 60 (2021), no. 1, Paper No. 8, 30 pp

  8. Baldelli, L., Brizi, Y., Filippucci, R.: On symmetric solutions for \((p,q)\)-Laplacian equations in \(\mathbb{R}^{N}\) with critical terms. J. Geom. Anal. 32 (2022), no. 4, Paper No. 120, 25 pp

  9. Bahrouni, A., Repovš, D.D.: Existence and nonexistence of solutions for \(p(x)\)-curl systems arising in electromagnetism. Commplex Variables and Elliptic Equations 63, 292–301 (2018)

    Article  MathSciNet  Google Scholar 

  10. Bartsch, T., Mederski, J.: Ground and bound state solutions of semilinear time-harmonic Maxwell equations in a bounded domain. Arch. Rational Mech. Anal. 215, 283–306 (2015)

    Article  MathSciNet  Google Scholar 

  11. Chabrowski, J., Fu, Y.Q.: Existence of solutions for \(p(x)\)-Laplacian problems on a bounded domain. J. Math. Anal. Appl. 306, 604–618 (2005)

    Article  MathSciNet  Google Scholar 

  12. Cencelj, M., Rădulescu, V.D., Repovš, D.D.: Double phase problems with variable growth. Nonlinear Anal. 177, 270–287 (2018)

    Article  MathSciNet  Google Scholar 

  13. Chen, Y.M., Levine, S., Rao, M.: Variable exponent linear growth functionals in inmage restoration. SIAM J. Appl. Math. 66, 1383–1406 (2006)

    Article  MathSciNet  Google Scholar 

  14. Colasuonno, F., Pucci, P.: Multiplicity of solutions for \(p(x)\)-polyharmonic elliptic Kirchhoff equations. Nonlinear Anal. 74, 5962–5974 (2011)

    Article  MathSciNet  Google Scholar 

  15. Diening, L., Harjulehto, P., Hästö, P., Růz̆ic̆ka, M.: Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Mathematics, Springer, Berlin, (2011)

  16. Ekeland, I.: On the variational principle. J. Math. Anal. Appl. 47, 324–353 (1974)

    Article  MathSciNet  Google Scholar 

  17. Fan, X.L., Zhao, D.: On the spaces \(L^{p(x)}(\Omega )\) and \(W^{m, p(x)}(\Omega )\). J. Math. Anal. Appl. 263, 424–446 (2001)

    Article  MathSciNet  Google Scholar 

  18. Figueiredo, G.M., Junior, J.R.S.: Multiplicity of solutions for a Kirchhoff equation with subcritical or critical growth. Differential and Integral Equations 25, 853–868 (2012)

    Article  MathSciNet  Google Scholar 

  19. Ge, B., Lu, J.F.: Multiple solutions for \(p(x)\)-curl systems with nonlinear boundary condition. Math. Nachr. (2022). https://doi.org/10.1002/mana.201900236

    Article  MathSciNet  Google Scholar 

  20. Ge, B., Gui, X.L., Lv, D.J.: Existence of two solutions for \(p(x)\)-curl systems with a small perturbation. Rocky Mountain J. Math. 49, 1877–1894 (2019)

    Article  MathSciNet  Google Scholar 

  21. Hamdani, M.K., Repovš, D.D.: Existence of solutions for systems arising in electromagnetism. J. Math. Anal. Appl. 486, 123898 (2020)

    Article  MathSciNet  Google Scholar 

  22. Kov\(\acute{\text{a}}\breve{c}\)ik, O., R\(\acute{\text{ a }}\)kosník, J.: On spaces \(L^{p(x)}\) and \(W^{k,p(x)}\), Czechoslovak Math. J. 41 (1991), 592–618

  23. Mederski, J.: Ground states of time-harmonic Maxwell equations in \(\mathbb{R} ^3\) with vanishing permittivity. Arch. Rational Mech. Anal. 218, 825–861 (2015)

    Article  MathSciNet  Google Scholar 

  24. Mederski, J., Szulkin, A.: A Sobolev-type inequaity for the curl operator and ground states for curl-curl equation with critical Sobolev exponent. Arch. Rational Mech. Anal. 241, 1815–1842 (2021)

    Article  MathSciNet  Google Scholar 

  25. Miranda, F., Rodrigues, F., Santos, L.: A class of stationary nonlinear Maxwell systems. Math. Models Methods Appl. Sci. 19, 1883–1905 (2009)

    Article  MathSciNet  Google Scholar 

  26. Papageorgiou, N.S., Rădulescu, V., Repovš, D.D.: Anisotropic singular Neumann equations with unbalanced growth. Potential Anal. 57, 55–82 (2022)

    Article  MathSciNet  Google Scholar 

  27. Papageorgiou, N.S., Zhang, J., Zhang, W.: Solutions with sign information for noncoercive double phase equations. J. Geometric Anal. 34, 14 (2024)

    Article  MathSciNet  Google Scholar 

  28. Prigozhin, L.: On the Bean critical-state model in superconductivity. European J. Appl. Math. 7, 237–247 (1996)

    Article  MathSciNet  Google Scholar 

  29. Pucci, P., Xiang, M.Q., Zhang, B.L.: Existence results for Schrödinger-Choquard Kirchhoff equations involving the fractional p-Laplacian. Adv. Calc. Var. 12, 253–275 (2019)

    Article  MathSciNet  Google Scholar 

  30. Rabinowitz, P. H.: Minimax methods in critical point theory with applications to differential equations, No. 65, Amer. Math. Soc. Providence RI ,(1986)

  31. Rajagopal, K. R., Růz̆ic̆ka, M.: On the modeling of electrorheological materials. Mech. Res. Commun. 23 (4) (1996), 401–407

  32. Rădulescu, V.: Nonlinear elliptic equations with variable exponent: old and new. Nonlinear Anal. 121, 336–369 (2015)

    Article  MathSciNet  Google Scholar 

  33. Rădulescu, V.: Isotropic and anisotropic double-phase problems:old and new. Opuscula Math. 39, 259–279 (2019)

    Article  MathSciNet  Google Scholar 

  34. Rădulescu, V., Repovš, D.: Partial differential equations with variable exponents: variational methods and qualitative analysis, CRC Press. Taylor & Francis Group, Boca Raton FL (2015)

    Book  Google Scholar 

  35. Rădulescu, V., Stăncut, I.: Combined concave-convex effects in anisotropic elliptic equations with variable exponent. NoDEA Nonlinear Differential Equations Appl. 22, 391–410 (2015)

    Article  MathSciNet  Google Scholar 

  36. Simon, J.: Régularité de la solution d’une équation non linéaire dans \(\mathbb{R}^{N}\) (French), Journées d’ Analyse Non Linéaire (Proc. Conf., Besançon, 1977), pp. 205–227, Lecture Notes in Math., 665, Springer, Berlin, (1978)

  37. Tang, X., Qin, D.: Ground state solutions for semilinear time-harmonic Maxwell equations. J. Math. Physics 57, 041505 (2016)

    Article  MathSciNet  Google Scholar 

  38. Tao, M., Zhang, B.: Solutions for nonhomogeneous fractional \((p, q)\)-Laplacian systems with critical nonlinearities. Adv. Nonlinear Anal. 11, 1332–1351 (2022)

    Article  MathSciNet  Google Scholar 

  39. Xiang, M., Hu, D., Wang, Y., Zhang, B.: Existence and multiplicity of solutions for \(p(x)\)-curl systems arising in electromagnetism. J. Math. Anal. Appl. 448, 1600–1617 (2017)

    Article  MathSciNet  Google Scholar 

  40. Xiang, M., Bisci, G.M., Zhang, B.: Variational analysis for nonlocal Yamabe-type systems. Discrete Contin. Dyn. Syst. S 13, 2069–2094 (2020)

    MathSciNet  Google Scholar 

  41. Xiang, M., Ma, Y.: Existence and stability of normalized solutions for nonlocal double phase problems. J. Geom. Anal. 34, 46 (2024)

    Article  MathSciNet  Google Scholar 

  42. Zhang, J., Zhou, H., Mi, H.: Multiplicity of semiclassical solutions for a class of nonlinear Hamiltonian elliptic system. Adv. Nonlinear Anal. 13, 20230139 (2024)

    Article  MathSciNet  Google Scholar 

  43. Zhikov, V.V.: On Lavrentiev’s phenomenonong. Russ. J. Math. Phys. 3, 249–269 (1995)

    Google Scholar 

  44. Zhikov, V.V.: Averaging of functionals of the calculus of variations and elasticity theory. Math. USSR-Izv. 29, 675–710 (1987)

    Article  Google Scholar 

Download references

Funding

Mingqi Xiang was supported by the Natural Science Foundation of Tianjin city, China (No. 23JCYBJC01140). Miaomiao Yang was supported by grant of No.2022PX092 from Qilu University of Technology (Shandong Academy of Sciences).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingqi Xiang.

Ethics declarations

Conflict of interest

There are no conflict of interest.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, M., Chen, L. & Yang, M. Ground State and Bounded State Solutions for a Critical Stationary Maxwell System Arising in Electromagnetism. J Geom Anal 34, 236 (2024). https://doi.org/10.1007/s12220-024-01682-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-024-01682-x

Keywords

Mathematics Subject Classification

Navigation