Skip to main content
Log in

Positive Intermediate Ricci Curvature with Maximal Symmetry Rank

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

Generalizing the foundational work of Grove and Searle, the second author proved upper bounds on the ranks of isometry groups of closed Riemannian manifolds with positive intermediate Ricci curvature and established some topological rigidity results in the case of maximal symmetry rank and positive second intermediate Ricci curvature. Here, we recover even stronger topological rigidity, including results for higher intermediate Ricci curvatures and for manifolds with non-trivial fundamental groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. This notion of positive intermediate Ricci curvature should not be confused with k-positive Ricci curvature as defined in [76]; see also [8, 78].

References

  1. Amann, M., Quast, P., Zarei, M.: The flavour of intermediate Ricci and homotopy when studying submanifolds of symmetric spaces. preprint, arXiv:2010.15742

  2. Berger, M.: Trois remarques sur les variétés riemanniennes à courbure positive. C. R. Acad. Sci. Paris Sér. A-B 263, A76–A78 (1966)

    Google Scholar 

  3. Bredon, G.E.: Introduction to Compact Transformation Groups, vol. 46. Academic Press, Washington, DC (1972)

    Google Scholar 

  4. Burdick, B.L.: Ricci-positive metrics on connected sums of projective spaces. Differ. Geom. Appl. 62, 212–233 (2019)

    MathSciNet  Google Scholar 

  5. Burdick, B.L.: Metrics of positive Ricci curvature on the connected sums of products with arbitrarily many spheres. Ann. Glob. Anal. Geom. 58(4), 433–476 (2020)

    MathSciNet  Google Scholar 

  6. Chahine, Y.K.: Volume estimates for tubes around submanifolds using integral curvature bounds. J. Geom. Anal. 30(4), 4071–4091 (2019)

    MathSciNet  Google Scholar 

  7. Conner, P.E.: On the action of the circle group. Michigan Math. J. 4(3), 241–247 (1957)

    MathSciNet  Google Scholar 

  8. Crowley, D., Wraith, D.: Intermediate curvatures and highly connected manifolds. preprint, arXiv:1704.07057

  9. Davis, J.F.: \({S}_3 \times {S}_3\) acts freely on \({S}^3 \times {S}^3\). preprint, arXiv:math/9806027

  10. Dearricott, O.: A 7-manifold with positive curvature. Duke Math. J. 158(2) (2011)

  11. Domínguez-Vázquez, M., González-Álvaro, D., Mouillé, L.: Infinite families of manifolds of positive \(k^{\rm th}\)-intermediate Ricci curvature with \(k\) small. Math. Ann. (2022)

  12. Domínguez-Vázquez, M., González-Álvaro, D., Rodríguez-Vázquez, A.: Normal homogeneous spaces with positive second intermediate Ricci curvature (In Preparation)

  13. Escher, C., Searle, C.: Non-negatively curved 6-manifolds with almost maximal symmetry rank. J. Geom. Anal. 29(1), 1002–1017 (2019)

    MathSciNet  Google Scholar 

  14. Escher, C., Searle, C.: Torus actions, maximality, and non-negative curvature. J. Reine Angew. Math. 2021(780), 221–264 (2021)

    MathSciNet  Google Scholar 

  15. Fang, F., Grove, K.: Reflection groups in non-negative curvature. J. Differ. Geom., 102(2), 179–205, 16

  16. Fang, F., Grove, K., Thorbergsson, G.: Tits geometry and positive curvature. Acta Math. 218(1), 1–53 (2017)

    MathSciNet  Google Scholar 

  17. Fang, F., Rong, X.: Positively curved manifolds with maximal discrete symmetry rank. Am. J. Math. 126(2), 227–245 (2004)

    MathSciNet  Google Scholar 

  18. Fang, F., Rong, X.: Homeomorphism classification of positively curved manifolds with almost maximal symmetry rank. Math. Ann. 332(1), 81–101 (2005)

    MathSciNet  Google Scholar 

  19. Frank, P., Rong, X., Wang, Y.: Fundamental groups of positively curved manifolds with symmetry. Math. Ann. 355(4), 1425–1441 (2013)

    MathSciNet  Google Scholar 

  20. Galaz-García, F.: A Note on Maximal Symmetry Rank, Quasipositive Curvature, and Low Dimensional Manifolds. In: Geometry of Manifolds with Non-negative Sectional Curvature, Volume 2110 of Lecture Notes in Mathematics, pp. 45–55. Springer, New York (2014)

  21. Grove, K., Halperin, S.: Contributions of rational homotopy theory to global problems in geometry. Publ. Math. Inst. Hautes Etudes Sci. 56(1), 171–177 (1982)

    MathSciNet  Google Scholar 

  22. Galaz-García, F., Kerin, M.: Cohomogeneity-two torus actions on non-negatively curved manifolds of low dimension. Math. Z. 276(1–2), 133–152 (2014)

    MathSciNet  Google Scholar 

  23. Galaz-García, F., Kerin, M., Radeschi, M.: Torus actions on rationally elliptic manifolds. Math. Z. 297, 197–221 (2020)

    MathSciNet  Google Scholar 

  24. Goette, S., Kerin, M., Shankar, K.: Highly connected 7-manifolds and non-negative sectional curvature. Ann. Math. (2) 191(3), 829 (2020)

    MathSciNet  Google Scholar 

  25. Goette, S., Kerin, M., Shankar, K.: Fake lens spaces and non-negative sectional curvature. In: Differential Geometry in the Large, Volume 463 of London Math. Soc. Lecture Note Series, pp. 285–290. Cambridge University Press, Cambridge (2021)

  26. Gorodski, C., Kollross, A., Wilking, B.: Actions on positively curved manifolds and boundary in the orbit space. Preprint arXiv:2112.00513

  27. Grove, K.: Geometry of, and via, symmetries. In: Conformal, Riemannian and Lagrangian Geometry, pp. 31–53. American Mathematical Society, Washington, DC (2002)

    Google Scholar 

  28. Grove, K., Searle, C.: Positively curved manifolds with maximal symmetry-rank. J. Pure Appl. Algebra 91, 137–142 (1994)

    MathSciNet  Google Scholar 

  29. Grove, K., Searle, C.: Differential topological restrictions curvature and symmetry. J. Differ. Geom. 47(3), 530–559 (1997)

    MathSciNet  Google Scholar 

  30. Galaz-García, F., Searle, C.: Low-dimensional manifolds with non-negative curvature and maximal symmetry rank. Proc. Am. Math. Soc. 139(7), 2559–2564 (2011)

    MathSciNet  Google Scholar 

  31. Galaz-García, F., Searle, C.: Nonnegatively curved 5-manifolds with almost maximal symmetry rank. Geom. Topol. 18(3), 1397–1435 (2014)

    MathSciNet  Google Scholar 

  32. Grove, K., Verdiani, L., Ziller, W.: An exotic \({T}_1\mathbb{S} ^4\) with positive curvature. Geom. Funct. Anal. 21(3), 499–524 (2011)

    MathSciNet  Google Scholar 

  33. Grove, K., Wilking, B.: A knot characterization and 1-connected nonnegatively curved 4-manifolds with circle symmetry. Geom. Topol. 18(5), 3091–3110 (2014)

    MathSciNet  Google Scholar 

  34. Guijarro, L., Wilhelm, F.: Focal radius, rigidity, and lower curvature bounds. Proc. Lond. Math. Soc. 116(6), 1519–1552 (2018)

    MathSciNet  Google Scholar 

  35. Guijarro, L., Wilhelm, F.: Restrictions on submanifolds via focal radius bounds. Math. Res. Lett. 27(1), 115–139 (2020)

    MathSciNet  Google Scholar 

  36. Guijarro, L., Wilhelm, F.: A softer connectivity principle. Commun. Anal. Geom. 30(5), 1093–1119 (2022)

    MathSciNet  Google Scholar 

  37. Grove, K., Wilking, B., Yeager, J.: Almost non-negative curvature and rational ellipticity in cohomogeneity two. Ann. Inst. Fourier (Grenoble) 69(7), 2921–2939 (2019)

    MathSciNet  Google Scholar 

  38. Grove, K., Wilking, B., Ziller, W.: Positively curved cohomogeneity one manifolds and 3-Sasakian geometry. J. Differ. Geom. 78(1), 33–111 (2008)

    MathSciNet  Google Scholar 

  39. Hambleton, I.: Some examples of free actions on products of spheres. Topology 45(4), 735–749 (2006)

    MathSciNet  Google Scholar 

  40. Hsiang, W.-Y., Kleiner, B.: On the topology of positively curved 4-manifolds with symmetry. J. Differ. Geom. 29(3), 615–621 (1989)

    MathSciNet  Google Scholar 

  41. Kennard, L., Samani, E.K., Searle, C.: Positive curvature and discrete abelian symmetry. Preprint, arXiv:2110.13345

  42. Kennard, L., Wylie, W.: Positive weighted sectional curvature. Indiana Univ. Math. J. 66(2), 419–462 (2017)

    MathSciNet  Google Scholar 

  43. Kennard, L., Wiemeler, M., Wilking, B.: Positive curvature, torus symmetry, and matroids. Preprint, arXiv:2212.08152

  44. Kennard, L., Wiemeler, M., Wilking, B.: Splitting of torus representations and applications in the Grove symmetry program. Preprint arXiv:2106.14723

  45. Mouillé, L.: Intermediate Ricci curvature. https://sites.google.com/site/lgmouille/research/intermediate-ricci-curvature

  46. Mouillé, L.: Local symmetry rank bound for positive intermediate Ricci curvatures. Geom. Dedicata 216, 23 (2022)

    MathSciNet  Google Scholar 

  47. Mouillé, L.: Torus actions on manifolds with positive intermediate Ricci curvature. J. Lond. Math. Soc. 106(4), 3792–3821 (2022)

    MathSciNet  Google Scholar 

  48. Montgomery, D., Yang, C.T.: Differentiable transformation groups on homotopy spheres. Michigan Math. J. 14(1), 33–46 (1967)

    MathSciNet  Google Scholar 

  49. Orlik, P., Raymond, F.: Actions of the torus on 4-manifolds. i. Trans. Am. Math. Soc. 152(2), 531–559 (1970)

    MathSciNet  Google Scholar 

  50. Perelman, G.: The entropy formula for the Ricci flow and its geometric applications. preprint, arXiv:math/0211159

  51. Perelman, G.: Finite extinction time for the solutions to the Ricci flow on certain three-manifolds. Preprint arXiv:math/0307245

  52. Perelman, G.: Ricci flow with surgery on three-manifolds. Preprint arXiv:math/0303109

  53. Petersen, P.: Riemannian Geometry, Volume 17 of Graduate Texts in Mathematics, 3rd edn. Springer, New York (2016)

    Google Scholar 

  54. Petersen, P., Wilhelm, F.: An exotic sphere with positive sectional curvature. Preprint arXiv:0805.0812

  55. Reiser, P.: Metrics of positive Ricci curvature on simply-connected manifolds of dimension \(6k\). Preprint arXiv:2210.15610

  56. Reiser, P.: Generalized surgery on Riemannian manifolds of positive Ricci curvature. Trans. Am. Math. Soc. 376(5), 3397–3418 (2023)

    MathSciNet  Google Scholar 

  57. Rong, X.: Positively curved manifolds with almost maximal symmetry rank. Geom. Dedicata 95(1), 157–182 (2002)

    MathSciNet  Google Scholar 

  58. Reiser, P. Wraith, D. A generalization of the Perelman gluing theorem and applications. Preprint arXiv:2308.06996

  59. Reiser, P. Wraith, D. Positive intermediate Ricci curvature on connected sums. Preprint arXiv:2310.02746

  60. Reiser, P. Wraith, D. Positive intermediate Ricci curvature on fibre bundles. Preprint arXiv:2211.14610

  61. Reiser, P., Wraith, D.J.: Intermediate Ricci curvatures and Gromov’s Betti number bound. J. Geom. Anal. 33(12), Paper No. 364, 20 (2023)

    MathSciNet  Google Scholar 

  62. Shankar, K.: On the fundamental groups of positively curved manifolds. J. Differ. Geom. 49(1), 179–182 (1998)

    MathSciNet  Google Scholar 

  63. Shen, Z.: Finite topological type and vanishing theorems for Riemannian manifolds. PhD thesis, State University of New York at Stony Brook (1990)

  64. Shen, Z.: On complete manifolds of nonnegative kth-Ricci curvature. Trans. Am. Math. Soc. 338(1), 289–310 (1993)

    Google Scholar 

  65. Smith, P.A.: Transformations of a finite period. Ann. Math. 39, 127–164 (1938)

    MathSciNet  Google Scholar 

  66. Smith, P.A.: Permutable periodic transformations. Proc. Natl. Acad. Sci. U.S.A. 30, 105–108 (1944)

    MathSciNet  Google Scholar 

  67. Su, J.C.: Transformation groups on cohomology projective spaces. Trans. Am. Math. Soc. 106(2), 305–318 (1963)

    MathSciNet  Google Scholar 

  68. Sugahara, K.: The isometry group and the diameter of a Riemannian manifold with positive curvature. Math. Japan. 27, 631–634 (1982)

    MathSciNet  Google Scholar 

  69. Sha, J.-P., Yang, D.G.: Positive Ricci curvature on the connected sums of \({S}^n\times {S}^m\). J. Differ. Geom. 33(1), 127–137 (1991)

    Google Scholar 

  70. Verdiani, L., Ziller, W.: Seven dimensional cohomogeneity one manifolds with nonnegative curvature. Math. Ann. 371(1–2), 655–662 (2018)

    MathSciNet  Google Scholar 

  71. Wilking, B.: Torus actions on manifolds with quasi-positive curvature. Unpublished Manuscript, Prepared by M. Kerin

  72. Wilhelm, F.: On intermediate Ricci curvature and fundamental groups. Illinois J. Math. 41(3), 488–494 (1997)

    MathSciNet  Google Scholar 

  73. Wilking, B.: Torus actions on manifolds of positive sectional curvature. Acta Math. 191(2), 259–297 (2003)

    MathSciNet  Google Scholar 

  74. Wilking, B.: Positively curved manifolds with symmetry. Ann. Math. 163(2), 607–668 (2006)

    MathSciNet  Google Scholar 

  75. Wilking, B.: A duality theorem for Riemannian foliations in nonnegative sectional curvature. Geom. Funct. Anal. 17(4), 1297–1320 (2007)

    MathSciNet  Google Scholar 

  76. Wolfson, J.: Manifolds with \(k\)-positive Ricci curvature. In: Variational Problems in Differential Geometry, pp. 182–201. Cambridge University Press, Cambridge (2011)

  77. Wraith, D.J.: New connected sums with positive Ricci curvature. Ann. Glob. Anal. Geom. 32(4), 343–360 (2007)

    MathSciNet  Google Scholar 

  78. Walsh, M., Wraith, D.J.: H-space and loop space structures for intermediate curvatures. Commun. Contemp. Math. 25, 2250017 (2022)

    MathSciNet  Google Scholar 

  79. Xia, C.: A generalization of the classical sphere theorem. Proc. Am. Math. Soc. 125(1), 255–258 (1997)

    MathSciNet  Google Scholar 

  80. Ziller, W.: Examples of manifolds with non-negative sectional curvature. Surv. Differ. Geom. 11(1), 63–102 (2006)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank William Wylie, Jason DeVito, Marco Radeschi, and Fernando Galaz-García for helpful discussions, along with Jason DeVito and Philipp Reiser for suggestions on a previous version of this article. We also thank the referees for their comments to improve the exposition. The first author was funded by NSF Grant DMS-2005280 and Simons Foundation Award MPTSM-00002791, and the second author was funded by NSF Award DMS-2202826.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence Mouillé.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kennard, L., Mouillé, L. Positive Intermediate Ricci Curvature with Maximal Symmetry Rank. J Geom Anal 34, 129 (2024). https://doi.org/10.1007/s12220-024-01575-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-024-01575-z

Keywords

Mathematics Subject Classification

Navigation