Skip to main content
Log in

Atomic Characterization of Musielak–Orlicz–Lorentz Hardy Spaces and Its Applications to Real Interpolation and Boundedness of Calderón–Zygmund Operators

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

Let \(\varphi :\ {{\mathbb {R}}^n}\times [0,\infty )\longrightarrow [0,\infty )\) be a Musielak–Orlicz function satisfying the uniformly Muckenhoupt condition and be of uniformly lower type \(p_{\varphi }^-\) and of uniformly upper type \(p_{\varphi }^+\) with \(0<p_{\varphi }^-\le p_{\varphi }^+<\infty \), and let \(q\in (0,\infty ]\). In this article, the authors introduce the Musielak–Orlicz–Lorentz Hardy space \(H^{\varphi ,q}({\mathbb {R}}^n)\) which, when \(q=\infty \), coincides with the known weak Musielak–Orlicz Hardy space \(WH^{\varphi }({\mathbb {R}}^n)\). Then the authors establish both atomic and molecular characterizations of \(H^{\varphi ,q}({\mathbb {R}}^n)\). Applying these characterizations, the authors obtain the real interpolation and the boundedness of Calderón–Zygmund operators on \(H^{\varphi ,q}({\mathbb {R}}^n)\) when \(q\in (0,{\infty })\) or from the Musielak–Orlicz Hardy space \(H^{\varphi }({\mathbb {R}}^n)\) to \(H^{\varphi ,\infty }({\mathbb {R}}^n)\) in the critical case. The ranges of all the exponents under consideration are the best possible admissible ones which particularly improve all the known corresponding results for \(WH^{\varphi }({{\mathbb {R}}^n})\) via weakening the original assumption \(0<p_{\varphi }^-\le p_{\varphi }^+\le 1\) to the full range \(0<p_{\varphi }^-\le p_{\varphi }^+<\infty \), and all the results when \(q\in (0,{\infty })\) are new. The main novelty of this article is that the authors skillfully use the corresponding results related to weighted Lebesgue spaces via their relations with Musielak–Orlicz spaces to overcome those essential difficulties caused by the deficiency of both the explicit quasi-norm expression of Musielak–Orlicz spaces and the boundedness of the Hardy–Littlewood maximal operator on associate spaces of Musielak–Orlicz spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Abu Shammala, W., Torchinsky, A.: The Hardy–Lorentz spaces \(H^{p, q}({{\mathbb{R} }^n})\). Studia Math. 182, 283–294 (2007)

    MathSciNet  MATH  Google Scholar 

  2. Almeida, A., Caetano, A.M.: Generalized Hardy spaces. Acta Math. Sin. (Engl. Ser.) 26, 1673–1692 (2010)

    MathSciNet  MATH  Google Scholar 

  3. Álvarez, J.: \(H^p\) and weak \(H^p\) continuity of Calderón–Zygmund type operators. In: Fourier Analysis, Lecture Notes in Pure and Appl. Math., vol. 157, pp. 17–34. Dekker, New York (1994)

  4. Álvarez, J.: Continuity properties for linear commutators of Calderón–Zygmund operators. Collect. Math. 49, 17–31 (1998)

    MathSciNet  MATH  Google Scholar 

  5. Andersen, K.F., John, R.T.: Weighted inequalities for vector-valued maximal functions and singular integrals. Studia Math. 69, 19–31 (1980/81)

  6. Aoki, T.: Locally bounded linear topological spaces. Proc. Imp. Acad. Tokyo 18, 588–594 (1942)

    MathSciNet  MATH  Google Scholar 

  7. Bergh, J., Löfström, J.: Interpolation Spaces. An Introduction. Grundlehren der Mathematischen Wissenschaften 223, Springer-Verlag, Berlin–New York (1976)

  8. Birnbaum, Z., Orlicz, W.: Über die verallgemeinerung des begrif and only ifes der zueinander konjugierten potenzen. Studia Math. 3, 1–67 (1931)

    MATH  Google Scholar 

  9. Bonami, A., Feuto, J.: Products of functions in Hardy and Lipschitz or BMO spaces. In: Recent Developments in Real and Harmonic Analysis, pp. 57–71, Appl. Numer. Harmon. Anal., Birkhäuser Boston, Boston, MA (2010)

  10. Bonami, A., Feuto, J., Grellier, S.: Endpoint for the DIV-CURL lemma in Hardy spaces. Publ. Mat. 54, 341–358 (2010)

    MathSciNet  MATH  Google Scholar 

  11. Bonami, A., Grellier, S., Ky, L.D.: Paraproducts and products of functions in \({\text{ BMO }}({{\mathbb{R} }^n})\) and \({\mathscr {H}}^1({{\mathbb{R} }^n})\) through wavelets. J. Math. Pures Appl. (9) 97, 230–241 (2012)

    MathSciNet  MATH  Google Scholar 

  12. Bonami, A., Iwaniec, T., Jones, P., Zinsmeister, M.: On the product of functions in BMO and \(H^1\). Ann. Inst. Fourier (Grenoble) 57, 1405–1439 (2007)

    MathSciNet  MATH  Google Scholar 

  13. Bonami, A., Ky, L.D., Liang, Y., Yang, D.: Several remarks on Musielak–Orlicz Hardy spaces. Bull. Sci. Math. 181, 103206 (2022)

  14. Bownik, M.: Anisotropic Hardy spaces and wavelets. Mem. Amer. Math. Soc. 164(781), 1–122 (2003)

    MathSciNet  MATH  Google Scholar 

  15. Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext, Springer, New York (2011)

    MATH  Google Scholar 

  16. Bui, T.A., Cao, J., Ky, L.D., Yang, D., Yang, S.: Musielak–Orlicz–Hardy spaces associated with operators satisfying reinforced off-diagonal estimates. Anal. Geom. Metr. Spaces 1, 69–129 (2013)

    MathSciNet  MATH  Google Scholar 

  17. Calderón, A.-P.: Intermediate spaces and interpolation, the complex method. Studia Math. 24, 113–190 (1964)

    MathSciNet  MATH  Google Scholar 

  18. Cao, J., Ky, L.D., Yang, D.: Bilinear decompositions of products of local Hardy and Lipschitz or BMO spaces through wavelets. Commun. Contemp. Math. 20, 1750025 (2018)

    MathSciNet  MATH  Google Scholar 

  19. Coifman, R.R., Lions, P.-L., Meyer, Y., Semmes, S.: Compensated compactness and Hardy spaces. J. Math. Pures Appl. (9) 72, 247–286 (1993)

    MathSciNet  MATH  Google Scholar 

  20. Duoandikoetxea, J.: Fourier Analysis. Graduate Studies in Mathematics 29, American Mathematical Society, Providence, RI (2001)

  21. Fefferman, C., Rivière, N.M., Sagher, Y.: Interpolation between \(H^p\) spaces: the real method. Trans. Amer. Math. Soc. 191, 75–81 (1974)

    MathSciNet  MATH  Google Scholar 

  22. Fefferman, R., Soria, F.: The space weak \(H^1\). Studia Math. 85, 1–16 (1986)

    MathSciNet  MATH  Google Scholar 

  23. Fefferman, C., Stein, E.M.: \(H^p\) spaces of several variables. Acta Math. 129, 137–193 (1972)

    MathSciNet  MATH  Google Scholar 

  24. Folland, G.B., Stein, E.M.: Hardy Spaces on Homogeneous Groups. Mathematical Notes 28, Princeton University Press, Princeton, N.J., University of Tokyo Press, Tokyo (1982)

  25. Fu, X., Ma, T., Yang, D.: Real-variable characterizations of Musielak–Orlicz Hardy spaces on spaces of homogeneous type. Ann. Acad. Sci. Fenn. Math. 45, 343–410 (2020)

  26. Fu, X., Yang, D.: Wavelet characterizations of Musielak–Orlicz Hardy spaces. Banach J. Math. Anal. 12, 1017–1046 (2018)

  27. Grafakos, L.: Classical Fourier Analysis. Third edition, Graduate Texts in Mathematics 249, Springer, New York (2014)

  28. Grafakos, L.: Modern Fourier Analysis. Third edition, Graduate Texts in Mathematics 250, Springer, New York (2014)

  29. Hao, Z., Li, L.: Orlicz–Lorentz Hardy martingale spaces. J. Math. Anal. Appl. 482, 123520 (2020)

    MathSciNet  MATH  Google Scholar 

  30. Harjulehto, P., Hästö, P.: Orlicz Spaces and Generalized Orlicz Spaces. Lecture Notes in Mathematics, vol. 2236, Springer, Cham (2019)

  31. Hou, S., Yang, D., Yang, S.: Lusin area function and molecular characterizations of Musielak–Orlicz Hardy spaces and their applications. Commun. Contemp. Math. 15, 1350029 (2013)

    MathSciNet  MATH  Google Scholar 

  32. Huy, D.Q., Ky, L.D.: Boundedness of fractional integral operators on Musielak–Orlicz Hardy spaces. Math. Nachr. 294, 2340–2354 (2021)

  33. Huy, D.Q., Ky, L.D.: John–Nirenberg type inequalities for Musielak–Orlicz Campanato spaces on spaces of homogeneous type. Vietnam J. Math. 47, 461–476 (2019)

    MathSciNet  MATH  Google Scholar 

  34. Ioku, N., Ishige, K., Yanagida, E.: Sharp decay estimates in Lorentz spaces for nonnegative Schrödinger heat semigroups. J. Math. Pures Appl. (9) 103, 900–923 (2015)

    MathSciNet  MATH  Google Scholar 

  35. Izuki, M., Nakai, E., Sawano, Y.: Atomic and wavelet characterization of Musielak–Orlicz Hardy spaces for generalized Orlicz functions. Integral Equations Operator Theory 94, 33 (2022)

    MathSciNet  MATH  Google Scholar 

  36. Jia, H., Chang, D.-C., Weisz, F., Yang, D., Yuan, W.: Musielak–Orlicz–Lorentz Hardy Spaces: Maximal function, finite atomic, and Littlewood–Paley characterizations with applications to dual spaces and summability of Fourier transforms, Acta Math. Sin. Engl. Ser. (2023, Submitted)

  37. Jiao, Y., Weisz, F., Xie, G., Yang, D.: Martingale Musielak–Orlicz–Lorentz Hardy spaces with applications to dyadic Fourier analysis. J. Geom. Anal. 31, 11002–11050 (2021)

    MathSciNet  MATH  Google Scholar 

  38. Jiao, Y., Zuo, Y., Zhou, D., Wu, L.: Variable Hardy–Lorentz spaces \(H^{p(\cdot ), q}({{\mathbb{R} }^n})\). Math. Nachr. 292, 309–349 (2019)

    MathSciNet  MATH  Google Scholar 

  39. Kempka, H., Vybíral, J.: Lorentz spaces with variable exponents. Math. Nachr. 287, 938–954 (2014)

    MathSciNet  MATH  Google Scholar 

  40. Ky, L.D.: Bilinear decompositions and commutators of singular integral operators. Trans. Amer. Math. Soc. 365, 2931–2958 (2013)

    MathSciNet  MATH  Google Scholar 

  41. Ky, L.D.: New Hardy spaces of Musielak–Orlicz type and boundedness of sublinear operators. Integral Equations Operator Theory 78, 115–150 (2014)

    MathSciNet  MATH  Google Scholar 

  42. Li, Y., Yang, D., Huang, L.: Real-Variable Theory of Hardy Spaces Associated with Generalized Herz Spaces of Rafeiro and Samko. Lecture Notes in Mathematics, vol. 2320, Springer, Cham (2022)

  43. Liang, Y., Huang, J., Yang, D.: New real-variable characterizations of Musielak–Orlicz Hardy spaces. J. Math. Anal. Appl. 395, 413–428 (2012)

    MathSciNet  MATH  Google Scholar 

  44. Liang, Y., Sawano, Y., Ullrich, T., Yang, D., Yuan, W.: New characterizations of Besov–Triebel–Lizorkin–Hausdorff spaces including coorbits and wavelets. J. Fourier Anal. Appl. 18, 1067–1111 (2012)

    MathSciNet  MATH  Google Scholar 

  45. Liang, Y., Yang, D.: Musielak–Orlicz Campanato spaces and applications. J. Math. Anal. Appl. 406, 307–322 (2013)

    MathSciNet  MATH  Google Scholar 

  46. Liang, Y., Yang, D., Jiang, R.: Weak Musielak–Orlicz Hardy spaces and applications. Math. Nachr. 289, 634–677 (2016)

    MathSciNet  MATH  Google Scholar 

  47. Liu, J., Haroske, D.D., Yang, D., Yuan, W.: Dual spaces and wavelet characterizations of anisotropic Musielak–Orlicz Hardy spaces. Appl. Comput. Math. 19, 106–131 (2020)

    MathSciNet  MATH  Google Scholar 

  48. Liu, J., Weisz, F., Yang, D., Yuan, W.: Littlewood–Paley and finite atomic characterizations of anisotropic variable Hardy–Lorentz spaces and their applications. J. Fourier Anal. Appl. 25, 874–922 (2019)

    MathSciNet  MATH  Google Scholar 

  49. Liu, J., Yang, D., Yuan, W.: Anisotropic Hardy–Lorentz spaces and their applications. Sci. China Math. 59, 1669–1720 (2016)

    MathSciNet  MATH  Google Scholar 

  50. Liu, J., Yang, D., Yuan, W.: Anisotropic variable Hardy–Lorentz spaces and their real interpolation. J. Math. Anal. Appl. 456, 356–393 (2017)

    MathSciNet  MATH  Google Scholar 

  51. Liu, J., Yang, D., Yuan, W.: Littlewood–Paley characterizations of anisotropic Hardy–Lorentz spaces. Acta Math. Sci. Ser. B (Engl. Ed.) 38, 1–33 (2018)

  52. Long, L., Weisz, F., Xie, G.: Real interpolation of martingale Orlicz Hardy spaces and BMO spaces. J. Math. Anal. Appl. 505, 125565 (2022)

    MathSciNet  MATH  Google Scholar 

  53. Lorentz, G.G.: Some new functional spaces. Ann. of Math. (2) 51, 37–55 (1950)

    MathSciNet  MATH  Google Scholar 

  54. Lorentz, G.G.: On the theory of spaces \(\Lambda \). Pacific J. Math. 1, 411–429 (1951)

    MathSciNet  MATH  Google Scholar 

  55. Lu, S.: Four Lectures on Real \(H^p\) Spaces. World Scientific Publishing Co., River Edge, NJ (1995)

    MATH  Google Scholar 

  56. Merucci, C.: Applications of interpolation with a function parameter to Lorentz, Sobolev and Besov spaces. In: Interpolation Spaces and Allied Topics in Analysis, pp. 183–201, Lecture Notes in Mathematics, vol. 1070, Springer, Berlin (1984)

  57. Meyer, Y., Coifman, R. R.: Wavelets. Calderón–Zygmund and Multilinear Operators, Cambridge Studies in Advanced Mathematics 48, Cambridge University Press, Cambridge, (1997)

  58. Musielak, J.: Orlicz Spaces and Modular Spaces. Lecture Notes in Mathematics, vol. 1034. Springer-Verlag, Berlin (1983)

  59. Nakai, E.: Pointwise multipliers for functions of weighted bounded mean oscillation. Studia Math. 105, 105–119 (1993)

    MathSciNet  MATH  Google Scholar 

  60. Nakai, E.: Singular and fractional integral operators on Campanato spaces with variable growth conditions. Rev. Mat. Complut. 23, 355–381 (2010)

    MathSciNet  MATH  Google Scholar 

  61. Nakai, E.: Singular and fractional integral operators on preduals of Campanato spaces with variable growth condition. Sci. China Math. 60, 2219–2240 (2017)

    MathSciNet  MATH  Google Scholar 

  62. Nakai, E., Sawano, Y.: Hardy spaces with variable exponents and generalized Campanato spaces. J. Funct. Anal. 262, 3665–3748 (2012)

    MathSciNet  MATH  Google Scholar 

  63. Nakai, E., Yabuta, K.: Pointwise multipliers for functions of bounded mean oscillation. J. Math. Soc. Japan 37, 207–218 (1985)

    MathSciNet  MATH  Google Scholar 

  64. Nakai, E., Yabuta, K.: Pointwise multipliers for functions of weighted bounded mean oscillation on spaces of homogeneous type. Math. Japon. 46, 15–28 (1997)

    MathSciNet  MATH  Google Scholar 

  65. Oberlin, R., Seeger, A., Tao, T., Thiele, C., Wright, J.: A variation norm Carleson theorem. J. Eur. Math. Soc. (JEMS) 14, 421–464 (2012)

    MathSciNet  MATH  Google Scholar 

  66. Orlicz, W.: Über eine gewisse Klasse von Räumen vom Typus, B. Bull. Int. Acad. Pol. Ser. A 8, 207–220 (1932)

    MATH  Google Scholar 

  67. Parilov, D.V.: Two theorems on the Hardy–Lorentz classes \(H^{1, q}\). J. Math. Sci. (N.Y.) 139, 6447–6456 (2006)

    MathSciNet  Google Scholar 

  68. Phuc, N.C.: The Navier–Stokes equations in nonendpoint borderline Lorentz spaces. J. Math. Fluid Mech. 17, 741–760 (2015)

  69. Rolewicz, S.: On a certain class of linear metric spaces. Bull. Acad. Polon. Sci. Cl. III(5), 471–473 (1957)

    MathSciNet  MATH  Google Scholar 

  70. Rudin, W.: Real and Complex Analysis. 3rd edn., McGraw-Hill Book Co., New York (1987)

  71. Rudin, W.: Functional Analysis. 2nd edn., International Series in Pure and Applied Mathematics, McGraw-Hill, New York (1991)

  72. Sawano, Y.: Atomic decompositions of Hardy spaces with variable exponents and its application to bounded linear operators. Integral Equations Operator Theory 77, 123–148 (2013)

    MathSciNet  MATH  Google Scholar 

  73. Sawano, Y.: Singular integral operators acting on Orlicz–Morrey spaces of the first kind. Nonlinear Stud. 26, 895–910 (2019)

    MathSciNet  MATH  Google Scholar 

  74. Sawano, Y., Ho, K.-P., Yang, D., Yang, S.: Hardy spaces for ball quasi-Banach function spaces. Dissertationes Math. 525, 1–102 (2017)

    MathSciNet  MATH  Google Scholar 

  75. Sawano, Y., Shimomura, T.: Sobolev embeddings for Riesz potentials of functions in Musielak–Orlicz–Morrey spaces over non-doubling measure spaces. Integral Transforms Spec. Funct. 25, 976–991 (2014)

    MathSciNet  MATH  Google Scholar 

  76. Sawano, Y., Shimomura, T.: Fractional maximal operator on Musielak–Orlicz spaces over unbounded quasi-metric measure spaces. Results Math. 76, 188 (2021)

    MathSciNet  MATH  Google Scholar 

  77. Seeger, A., Tao, T.: Sharp Lorentz space estimates for rough operators. Math. Ann. 320, 381–415 (2001)

    MathSciNet  MATH  Google Scholar 

  78. Stein, E. M., Shakarchi, R.: Functional Analysis. Introduction to Further Topics in Analysis, Princeton Lectures in Analysis 4, Princeton University Press, Princeton, NJ, (2011)

  79. Stein, E.M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton Mathematical Series 32, Princeton University Press, Princeton, NJ (1971)

  80. Sun, J., Yang, D., Yuan, W.: Weak Hardy spaces associated with ball quasi-Banach function spaces on spaces of homogeneous type: decompositions, real interpolation, and Calderón–Zygmund operators. J. Geom. Anal. 32, 191 (2022)

    MATH  Google Scholar 

  81. Sun, J., Yang, D., Yuan, W.: Molecular characterization of weak Hardy spaces associated with ball quasi–Banach function spaces on spaces of homogeneous type with its application to Littelwood–Paley function characterization. Forum Math. 34, 1539–1589 (2022)

    MathSciNet  MATH  Google Scholar 

  82. Wang, F., Yang, D., Yang, S.: Applications of Hardy spaces associated with ball quasi-Banach function spaces. Results Math. 75, 26 (2020)

    MathSciNet  MATH  Google Scholar 

  83. Wang, S., Yang, D., Yuan, W., Zhang, Y.: Weak Hardy-type spaces associated with ball quasi–Banach function spaces II: Littlewood–Paley characterizations and real interpolation. J. Geom. Anal. 31, 631–696 (2021)

  84. Weisz, F., Xie, G., Yang, D.: Dual spaces for martingale Musielak–Orlicz Lorentz Hardy spaces. Bull. Sci. Math. 179, 103154 (2022)

    MathSciNet  MATH  Google Scholar 

  85. Xie, G., Weisz, F., Yang, D., Jiao, Y.: New martingale inequalities and applications to Fourier analysis. Nonlinear Anal. 182, 143–192 (2019)

    MathSciNet  MATH  Google Scholar 

  86. Xie, G., Yang, D.: Atomic characterizations of weak martingale Musielak–Orlicz Hardy spaces and their applications. Banach J. Math. Anal. 13, 884–917 (2019)

    MathSciNet  MATH  Google Scholar 

  87. Yan, X., He, Z., Yang, D., Yuan, W.: Hardy spaces associated with ball quasi-Banach function spaces on spaces of homogeneous type: Characterizations of maximal functions, decompositions, and dual spaces. Math. Nachr. (2022). https://doi.org/10.1002/mana.202100432

    Article  Google Scholar 

  88. Yan, X., Yang, D.: New molecular characterization of Musielak–Orlicz Hardy spaces on spaces of homogeneous type and its applications. Chinese Ann. Math. Ser. B (2023, to appear)

  89. Yan, X., Yang, D., Yuan, W., Zhuo, C.: Variable weak Hardy spaces and their applications. J. Funct. Anal. 271, 2822–2887 (2016)

    MathSciNet  MATH  Google Scholar 

  90. Yang, D., Liang, Y., Ky, L.D.: Real-Variable Theory of Musielak–Orlicz Hardy Spaces. Lecture Notes in Mathematics, vol. 2182, Springer, Cham (2017)

  91. Yang, D., Yang, S.: Local Hardy spaces of Musielak–Orlicz type and their applications. Sci. China Math. 55, 1677–1720 (2012)

  92. Yang, D., Yuan, W., Zhang, Y.: Bilinear decomposition and divergence-curl estimates on products related to local Hardy spaces and their dual spaces. J. Funct. Anal. 280, 108796 (2021)

    MathSciNet  MATH  Google Scholar 

  93. Yang, D., Yuan, W., Zhuo, C.: Musielak–Orlicz Besov-type and Triebel–Lizorkin-type spaces. Rev. Mat. Complut. 27, 93–157 (2014)

  94. Zhang, Y., Yang, D., Yuan, W., Wang, S.: Real-variable characterizations of Orlicz-slice Hardy spaces. Anal. Appl. (Singap.) 17, 597–664 (2019)

    MathSciNet  MATH  Google Scholar 

  95. Zhang, Y., Yang, D., Yuan, W., Wang, S.: Weak Hardy-type spaces associated with ball quasi-Banach function spaces I: Decompositions with applications to boundedness of Calderón–Zygmund operators. Sci. China Math. 64, 2007–2064 (2021)

    MathSciNet  MATH  Google Scholar 

  96. Zhou, X., He, Z., Yang, D.: Real-variable characterizations of Hardy–Lorentz spaces on spaces of homogeneous type with applications to real interpolation and boundedness of Calderón–Zygmund operators. Anal. Geom. Metr. Spaces 8, 182–260 (2020)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Yuan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This project is partially supported by the National Natural Science Foundation of China (Grant Nos. 12122102, 11971058 and 12071197) and the National Key Research and Development Program of China (Grant No. 2020YFA0712900).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, H., Weisz, F., Yang, D. et al. Atomic Characterization of Musielak–Orlicz–Lorentz Hardy Spaces and Its Applications to Real Interpolation and Boundedness of Calderón–Zygmund Operators. J Geom Anal 33, 188 (2023). https://doi.org/10.1007/s12220-023-01242-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-023-01242-9

Keywords

Mathematics Subject Classification

Navigation