Skip to main content
Log in

On Fractional Musielak–Sobolev Spaces and Applications to Nonlocal Problems

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

In this work, we establish some abstract results on the perspective of the fractional Musielak–Sobolev spaces, such as: uniform convexity, Radon–Riesz property with respect to the modular function, \((S_{+})\)-property, Brezis–Lieb type Lemma to the modular function and monotonicity results. Moreover, we apply the theory developed to study the existence of solutions to the following class of nonlocal problems

$$\begin{aligned} \left\{ \begin{array}{ll} (-\varDelta )_{\varPhi _{x,y}}^s u = f(x,u),&{} \text{ in } \varOmega ,\\ u=0,&{} \text{ on } {\mathbb {R}}^N\setminus \varOmega , \end{array} \right. \end{aligned}$$

where \(N\ge 2\), \(\varOmega \subset {\mathbb {R}}^N\) is a bounded domain with Lipschitz boundary \(\partial \varOmega \) and \(f:\varOmega \times {\mathbb {R}} \rightarrow {\mathbb {R}}\) is a Carathéodory function not necessarily satisfying the Ambrosetti–Rabinowitz condition. Such class of problems enables the presence of many particular operators, for instance, the fractional operator with variable exponent, double-phase and double-phase with variable exponent operators, anisotropic fractional p-Laplacian, among others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aberqi, A., Benslimane, O., Ouaziz, A., Repovš, D.D.: On a new fractional Sobolev space with variable exponent on complete manifolds. Bound. Value Probl. 2022(7), 1–20 (2022)

    MathSciNet  MATH  Google Scholar 

  2. Adams, R.A., Fournier, J.F.: Sobolev Spaces. Academic, New York (2003)

    MATH  Google Scholar 

  3. Alberico, A., Cianchi, A., Pick, L., Slavikova, L.: Fractional Orlicz–Sobolev embeddings. J. Math. Pures Appl. 149, 216–253 (2021)

    MathSciNet  MATH  Google Scholar 

  4. Alves, C.O., Gonçalves, J.V., Santos, J.A.: Strongly nonlinear multivalued elliptic equations on a bounded domain. J. Glob. Optim. 58, 565–593 (2014)

    MathSciNet  MATH  Google Scholar 

  5. Ambrosio, V., Rădulescu, V.D.: Fractional double-phase patterns: concentration and multiplicity of solutions. J. Math. Pures Appl. 142(9), 101–145 (2020)

    MathSciNet  MATH  Google Scholar 

  6. Azroul, E., Benkirane, A., Shimi, M.: Eigenvalue problems involving the fractional \(p(x)\)-Laplacian operator. Adv. Oper. Theory 4(2), 539–555 (2019)

    MathSciNet  MATH  Google Scholar 

  7. Azroul, E., Benkirane, A., Srati, M.: Nonlocal eigenvalue type problem in fractional Orlicz–Sobolev space. Adv. Oper. Theory 5, 1599–1617 (2020)

    MathSciNet  MATH  Google Scholar 

  8. Azroul, E., Benkirane, A., Shimi, M., Srati, M.: On a class of nonlocal problems in new fractional Musielak–Sobolev spaces. Appl. Anal. (2020). https://doi.org/10.1080/00036811.2020.1789601

    Article  MATH  Google Scholar 

  9. Azroul, E., Benkirane, A., Shimi, M., Srati, M.: Embedding and extension results in fractional Musielak–Sobolev spaces. Appl. Anal. (2021). https://doi.org/10.1080/00036811.2021.1948019

    Article  MATH  Google Scholar 

  10. Azroul, E., Benkirane, A., Srati, M.: Nonlocal problems with Neumann and Robin boundary condition in fractional Musielak–Sobolev spaces (2022). arXiv:2203.01756

  11. Bahrouni, A.: Comparison and sub-supersolution principles for the fractional \(p(x)\)-Laplacian. J. Math. Anal. Appl. 458(2), 1363–1372 (2018)

    MathSciNet  MATH  Google Scholar 

  12. Bahrouni, A., Bahrouni, S., Xiang, M.: On a class of nonvariational problems in fractional Orlicz–Sobolev spaces. Nonlinear Anal. 190, 111595 (2020)

    MathSciNet  MATH  Google Scholar 

  13. Bahrouni, A., Rădulescu, V.: On a new fractional Sobolev space and applications to nonlocal variational problems with variable exponent. Discrete Contin. Dyn. Syst. S 11(3), 379–389 (2018)

    MathSciNet  MATH  Google Scholar 

  14. Bahrouni, A., Rădulescu, V., Winkert, P.: Robin fractional problems with symmetric variable growth. J. Math. Phys. 61(10), 101503 (2020)

    MathSciNet  MATH  Google Scholar 

  15. Bahrouni, A., Radulescu, V., Repovs, D.: Double phase transonic flow problems with variable growth: nonlinear patterns and stationary waves. Nonlinearity 32(7), 24812495 (2019)

    MathSciNet  MATH  Google Scholar 

  16. Bahrouni, S., Ounaies, H.: Embedding theorems in the fractional Orlicz–Sobolev space and applications to non-local problems. Discrete Contin. Dyn. Syst 40(5), 2917–2944 (2020)

    MathSciNet  MATH  Google Scholar 

  17. Bahrouni, S., Ounaies, H., Tavares, L.S.: Basic results of fractional Orlicz–Sobolev space and applications to non-local problems. Topol. Methods Nonlinear Anal. 55(2), 681–695 (2020)

    MathSciNet  MATH  Google Scholar 

  18. Baroni, P., Colombo, M., Mingione, G.: Harnack inequalities for double phase functionals. Nonlinear Anal. 121, 206–222 (2015)

    MathSciNet  MATH  Google Scholar 

  19. Baroni, P., Colombo, M., Mingione, G.: Regularity for general functionals with double phase. Calc. Var. Partial Differ. Equ. 57(2), 62 (2018)

    MathSciNet  MATH  Google Scholar 

  20. Biswas, R., Bahrouni, S., Carvalho, M.L.: Fractional double phase Robin problem involving variable order-exponents without Ambrosetti–Rabinowitz condition. Z. Angew. Math. Phys. 73, 99 (2022)

    MathSciNet  MATH  Google Scholar 

  21. Bogachev, V.I.: Measure Theory. Springer, Berlin (2007)

    MATH  Google Scholar 

  22. Brezis, H., Lieb, E.: A relation between pointwise convergence functions and convergences of functionals. Proc. Am. Math. Soc. 88, 486–490 (1983)

    MathSciNet  MATH  Google Scholar 

  23. Carvalho, M.L.M., Gonçalves, J.V.A., Da Silva, E.D.: On quasilinear elliptic problems without the Ambrosetti–Rabinowitz condition. J. Math. Anal. Appl. 426(1), 466–483 (2015)

    MathSciNet  MATH  Google Scholar 

  24. Chammem, R., Ghanmi, A., Sahbani, A.: Existence of solution for a singular fractional Laplacian problem with variable exponents and indefinite weight. Complex Var. Elliptic Equ. 66(8), 1320–1332 (2020)

    MathSciNet  MATH  Google Scholar 

  25. Colasuonno, F., Squassina, M.: Eigenvalues for double phase variational integrals. Ann. Mat. Pura Appl. 195(6), 1917–1959 (2016)

    MathSciNet  MATH  Google Scholar 

  26. Colombo, M., Mingione, G.: Bounded minimisers of double phase variational integrals. Arch. Ration. Mech. Anal. 218, 219–273 (2015)

    MathSciNet  MATH  Google Scholar 

  27. Colombo, M., Mingione, G.: Regularity for double phase variational problems. Arch. Ration. Mech. Anal. 215, 443–496 (2015)

    MathSciNet  MATH  Google Scholar 

  28. Costa, D.G., Magalhães, C.A.: Variational elliptic problems which are nonquadratic at infinity. Nonlinear Anal. 23, 1401–1412 (1994)

    MathSciNet  MATH  Google Scholar 

  29. Crespo-Blanco, Á., Gasiński, L., Harjulehto, P., Winkert, P.: A new class of double phase variable exponent problems: existence and uniqueness. J. Differ. Equ. 323, 182–228 (2022)

    MathSciNet  MATH  Google Scholar 

  30. da Silva, E.D., Carvalho, M.L.M., Silva, K., Gonçalves, J.V.A.: Quasilinear elliptic problems on non-reflexive Orlicz–Sobolev spaces. Topol. Methods Nonlinear Anal. 54, 587–612 (2019)

    MathSciNet  MATH  Google Scholar 

  31. Dal Maso, G., Murat, F.: Almost everywhere convergence of gradients of solutions to nonlinear elliptic systems. Nonlinear Anal. 31, 405–412 (1998)

    MathSciNet  MATH  Google Scholar 

  32. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136, 521–73 (2012)

    MathSciNet  MATH  Google Scholar 

  33. Diening, L., Harjulehto, P., Hästö, P., Růžička, M.: Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Mathematics, vol. 2017. Springer, Heidelberg (2017)

    MATH  Google Scholar 

  34. Fan, X.L.: Differential equations of divergence form in Musielak–Sobolev spaces and sub-supersolution method. J. Math. Anal. Appl. 386, 593–604 (2012)

    MathSciNet  MATH  Google Scholar 

  35. Fernández Bonder, J., Salort, A.M.: Fractional order Orlicz–Sobolev spaces. J. Funct. Anal. 277(2), 333–367 (2019)

    MathSciNet  MATH  Google Scholar 

  36. Fernández Bonder, J., Llanos, M.P., Salort, A.M.: A Hölder infinity Laplacian obtained as limit of Orlicz fractional Laplacians. Rev. Mat. Complut. 35(2), 447–483 (2021)

    MATH  Google Scholar 

  37. Fukagai, N., Ito, M., Narukawa, K.: Positive solutions of quasilinear elliptic equations with critical Orlicz–Sobolev nonlinearity on \({\mathbb{R} }^{N}\). Funkcial. Ekvac. 49(2), 235–267 (2006)

    MathSciNet  MATH  Google Scholar 

  38. Harjulehto, P., Hästö, P.: Uniform convexity and associate spaces. Czechoslov. Math. J. 68(143, 4), 1011–1020 (2018)

    MathSciNet  MATH  Google Scholar 

  39. Harjulehto, P., Hästö, P.: Orlicz Spaces and Generalized Orlicz Spaces. Springer, Berlin (2019)

    MATH  Google Scholar 

  40. Kaufmann, U., Rossi, J.D., Vidal, R.: Fractional Sobolev spaces with variable exponents and fractional \(p(x)\)-Laplacians. Electron. J. Qual. Theory Differ. Equ. 76, 1–10 (2017)

    MathSciNet  MATH  Google Scholar 

  41. Kufner, A., John, O., Fučík, S.: Function Spaces. Noordhoff, Leyden (1977)

    MATH  Google Scholar 

  42. Liu, D., Zhao, P.: Solutions for a quasilinear elliptic equation in Musielak–Sobolev spaces. Nonlinear Anal. Real World Appl. 26, 315–329 (2015)

    MathSciNet  MATH  Google Scholar 

  43. Liu, W.L., Dai, G.W.: Existence and multiplicity results for double phase problem. J. Differ. Equ. 265(9), 4311–4334 (2018)

    MathSciNet  MATH  Google Scholar 

  44. Marcellini, P.: Regularity of minimisers of integrals of the calculus of variations with non standard growth conditions. Arch. Ration. Mech. Anal. 105, 267–284 (1989)

    MATH  Google Scholar 

  45. Marcellini, P.: Regularity and existence of solutions of elliptic equations with p, q-growth conditions. J. Differ. Equ. 90, 1–30 (1991)

    MathSciNet  MATH  Google Scholar 

  46. Mihăilescu, M., Rădulescu, V.: Neumann problems associated to nonhomogeneous differential operators in Orlicz–Sobolev spaces. Ann. Inst. Fourier (Grenoble) 58(6), 2087–2111 (2008)

    MathSciNet  MATH  Google Scholar 

  47. Montenegro, M.: Strong maximum principles for supersolutions of quasilinear elliptic equations. Nonlinear Anal. 37(4), 431–448 (1999)

    MathSciNet  MATH  Google Scholar 

  48. Musielak, J.: Orlicz Spaces and Modular Spaces. Springer, Berlin (1983)

    MATH  Google Scholar 

  49. Papageorgiou, N.S., Rădulescu, V.D., Repovš, D.D.: Nonlinear Analysis—Theory and Methods. Springer Monographs in Mathematics, Springer, Cham (2019)

    MATH  Google Scholar 

  50. Salort, A.M.: Eigenvalues and minimizers for a non-standard growth non-local operator. J. Differ. Equ. 268(9), 5413–5439 (2020)

    MathSciNet  MATH  Google Scholar 

  51. Zeidler, E.: Nonlinear Functional Analysis and Its Applications, II/B. Springer, New York (1990)

    MATH  Google Scholar 

  52. Zhang, Y., Tang, X., Rădulescu, V.D.: Concentration of solutions for fractional double-phase problems: critical and supercritical cases. J. Differ. Equ. 302, 139–184 (2021)

    MathSciNet  MATH  Google Scholar 

  53. Zhikov, V.V.: Averaging of functionals of the calculus of variations and elasticity theory. Izv. Akad. Nauk SSSR Ser. Mat. 50(4), 675–710 (1986)

    MathSciNet  Google Scholar 

  54. Zhikov, V.V.: On Lavrentiev’s phenomenon. Russ. J. Math. Phys. 3, 249–269 (1995)

    MathSciNet  MATH  Google Scholar 

  55. Zhikov, V.V.: On some variational problems. Russ. J. Math. Phys. 5, 105–116 (1997)

    MathSciNet  MATH  Google Scholar 

  56. Zhikov, V.V.: On variational problems and nonlinear elliptic equations with nonstandard growth conditions. J. Math. Sci. (N.Y.) 173(5), 463–570 (2011)

    MathSciNet  MATH  Google Scholar 

  57. Zuo, J., Fiscella, A., Bahrouni, A.: Existence and multiplicity results for \(p (\cdot )\) & \(q(\cdot )\) fractional Choquard problems with variable order. Complex Var. Elliptic Equ. 67(2), 500–516 (2022)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first and third authors were partially supported by CNPq with Grants 304699/2021-7 and 316643/2021-1, respectively. The second author was partially supported by CAPES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Salort.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Albuquerque, J.C., de Assis, L.R.S., Carvalho, M.L.M. et al. On Fractional Musielak–Sobolev Spaces and Applications to Nonlocal Problems. J Geom Anal 33, 130 (2023). https://doi.org/10.1007/s12220-023-01211-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-023-01211-2

Keywords

Mathematics Subject Classification

Navigation