Skip to main content
Log in

Boundary Controllability of a Coupled Inhomogeneous Plates System

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

In this article, the boundary controllability of a coupled system consisting of several inhomogeneous plates is studied. By using the Riemannian geometry approach together with a compact perturbation method, we prove that the plate system is exactly null controllable under some verifiable geometrical assumptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boulakia, M., Osses, A.: Local null controllability of a two-dimensional fluid-structure interaction problem. ESAIM: COCV 14, 1–42 (2008)

    MathSciNet  MATH  Google Scholar 

  2. Tucsnak, M., Vanninathan, M.: Locally distributed control for a model of fluid–structure interaction. Syst. Control Lett. 58, 547–552 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Lequeurre, J.: Null controllability of a fluid-structure system. SIAM J. Control Optim. 51, 1841–1872 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Allibert, B., Micu, S.: Controllability of analytic functions for a wave equation coupled with a beam. Rev. Mat. Iberoam. 15, 547–592 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Yang, F.Y., Yao, P.F., Chen, G.: Boundary controllability of structural acoustic systems with variable coefficients and curved walls. Math. Control Signals Syst. 30, 1–28 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  6. Avalos, G., Lasiecka, I., Rebarber, R.: Boundary controllability of a coupled wave/Kirchoff system. Syst. Control Lett. 50, 331–341 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Li, T.-T., Rao, B.P.: Asymptotic controllability and asymptotic synchronization for a coupled system of wave equations with Dirichlet boundary controls. Asym. Anal. 86, 199–226 (2014)

    MathSciNet  MATH  Google Scholar 

  8. Li, T.-T., Rao, B.P.: Exact boundary controllability for a coupled system of wave equations with Neumann boundary controls. Chin. Ann. Math. Ser. B. 38, 473–488 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Micu, S., Zuazua, E.: Boundary controllability of a linear hybrid system arising in the control of noise. SIAM J. Control Optim. 35, 1614–1637 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Liu, W.: Stabilization and controllability for the transmission wave equation. IEEE Trans. Automat. Control. 46, 1900–1907 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Liu, W., Williams, G.H.: Exact controllability for problems of transmission of the plate equation with lower-order terms. Q. Appl. Math. 58, 37–68 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Guo, B.Z., Shao, Z.C.: On well-posedness, regularity and exact controllability for problems of transmission of plate equation with variable coefficients. Q. Appl. Math. 65, 705–736 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Deng, L., Zhang, Z.F.: Controllability for transmission wave/plate equations on Riemannian manifolds. Syst. Control Lett. 91, 48–54 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Zhang, X., Zuazua, E.: Control, observation and polynomial decay for a coupled heat-wave system. Compt. Rend. Math. 336, 823–828 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Raymond, J.P., Vanninathan, M.: Null-controllability for a coupled heat-finite-dimensional beam system. In: Optimal control of coupled systems of partial differential equations. In: International Series of Numerical Mathematics, vol. 158, pp. 221–238 (2009)

  16. Triggiani, R.: A Heat-Viscoelastic structure interaction model with Neumann and Dirichlet boundary control at the interface: optimal regularity, control theoretic implications. Appl. Math. Optim. 73, 571–594 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Szilard, R.: Theories and Applications of Plate Analysis: Classical Numerical and Engineering Methods. Wiley, Hoboken (2004)

    Book  Google Scholar 

  18. Ventsel, E., Krauthammer, T.: Thin Plates and Shells: Theory, Analysis, and Applications. Marcel Dekker Inc., New York (2001)

    Book  Google Scholar 

  19. Lions, J.L.: Exact controllability, stabilization and perturbations for distributed system. SIAM Rev. 30, 1–68 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  20. Komornik, V.: Exact Controllability and Stabilization. The Multiplier Method. Masson, Paris (1994)

    MATH  Google Scholar 

  21. Lasiecka, I., Triggiani, R.: Exact controllability of the Euler–Bernoulli equation with controls in the Dirichlet and Neumann boundary conditions: A non-conservative case. SIAM J. Control Optim. 27, 330–373 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lasiecka, I., Triggiani, R.: Exact controllability of the Euler-Bernoulli equation with boundary controls for displacement and moment. J. Math. Anal. Appl. 146, 1–33 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  23. Horn, M.A.: Exact controllability of the Euler-Bernoulli plate via bending moments only on the space of optimal regularity. J. Math. Anal. Appl. 167, 557–581 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lagnese, J.E., Lions, J.L.: Modeling. Analysis and Control of Thin Plates. Masson, Paris (1988)

    MATH  Google Scholar 

  25. Zuazua, E.: Controlabilite exacte d’un modele de plaques vibrantes en un temps arbitrairement petit. C. R. Acad. Sci. Paris Ser I 304, 173–176 (1987)

    MathSciNet  MATH  Google Scholar 

  26. Yao, P.F.: Observability inequalities for the Euler-Bernoulli plate with variable coefficients. In: Differential geometric methods in the control of partial differential equations. In: Contemporary Mathematics, vol. 268, pp. 383–406. American Mathematical Society, Providence, RI (2000)

  27. Yang, F.Y.: Exact controllability of the Euler–Bernoulli plate with variable coefficients and simply supported boundary condition. Electron. J. Differ. Equ. 257, 1–19 (2016)

    MathSciNet  Google Scholar 

  28. Guo, B.Z., Zhang, Z.X.: Well-posedness and regularity for an Euler–Bernoulli plate with variable coefficients and boundary control and observation. Math. Control Signals Syst. 19, 337–360 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wen, R.L., Chai, S.G., Guo, B.Z.: Well-posedness and regularity of Euler–Bernoulli equation with variable coefficient and Dirichlet boundary control and collocated observation. Math. Methods Appl. Sci. 37, 2889–2905 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Yao, P.F.: Modeling and Control in Vibrational and Structural Dynamics: A Differential Geometric Approach, Chapman and Hall/CRC Applied Mathematics and Nonlinear Science Series. CRC Press, Boca Raton, FL (2011)

    Book  Google Scholar 

  31. Yao, P.F.: On the observability inequalities for exact controllability of wave equations with variable coefficients. SIAM J. Control Optim. 37, 1568–1599 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  32. Guo, Y.X., Yao, P.F.: Stabilization of Euler–Bernoulli plate equation with variable coefficients by nonlinear boundary feedback. J. Math. Anal. Appl. 317, 50–70 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  33. Yang, F.Y., Bin-Mohsin, B., Chen, G., Yao, P.F.: Exact-approximate boundary controllability of the thermoelastic plate with a curved middle surface. J. Math. Anal. Appl. 451, 405–433 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  34. Li, J., Chai, S.G.: Stabilization of the variable-coefficient structural acoustic model with curved middle surface and delay effects in the structural component. J. Math. Anal. Appl. 454, 510–532 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  35. Ourada, N., Triggiani, R.: Uniform stabilization of the Euler–Bernoulli equation with feedback operator only in the Neumann boundary condition. Differ. Integr. Equ. 4, 277292 (1991)

    MathSciNet  MATH  Google Scholar 

  36. Tataru, D.: Boundary controllability for conservative PDEs. Appl. Math. Optim. 31, 257295 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  37. Dolecki, S., Russell, D.L.: A general theory of observation and control. SIAM J. Control Optim. 15, 185–220 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  38. Lions, J.L., Magenes, E.: Non-homogeneous Boundary Value Problems and Applications, vol. 1. Springer, New York (1972)

    Book  MATH  Google Scholar 

  39. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York (1983)

    Book  MATH  Google Scholar 

  40. Pederson, R.N.: On the unique continuation theorem for certain second and fourth order elliptic equations. Commun. Pure Appl. Math. 1, 67–80 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  41. Fattorini, H.O.: Second Order Linear Differential Equations in Banach Spaces, North-Holland Mathematics Studies, vol. 108. North-Holland Publishing Co., Amsterdam (1985)

    Google Scholar 

Download references

Acknowledgements

The author would like to thank the anonymous referee for the very helpful and constructive comments.

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengyan Yang.

Ethics declarations

Conflict of interest

The author declare that there is no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, F. Boundary Controllability of a Coupled Inhomogeneous Plates System. J Geom Anal 33, 55 (2023). https://doi.org/10.1007/s12220-022-01115-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-022-01115-7

Keywords

Mathematics Subject Classification

Navigation