Skip to main content
Log in

The Isoperimetric Problem for Regular and Crystalline Norms in \({\mathbb {H}}^1\)

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We study the isoperimetric problem for anisotropic perimeter measures on \(\mathbb {R}^3\), endowed with the Heisenberg group structure. The perimeter is associated with a left-invariant norm \(\phi \) on the horizontal distribution. In the case where \(\phi \) is the standard norm in the plane, such isoperimetric problem is the subject of Pansu’s conjecture, which is still unsolved. Assuming some regularity on \(\phi \) and on its dual norm \(\phi ^*\), we characterize \(\mathrm {C}^2\)-smooth isoperimetric sets as the sub-Finsler analogue of Pansu’s bubbles. The argument is based on a fine study of the characteristic set of \(\phi \)-isoperimetric sets and on establishing a foliation property by sub-Finsler geodesics. When \(\phi \) is a crystalline norm, we show the existence of a partial foliation for constant \(\phi \)-curvature surfaces by sub-Finsler geodesics. By an approximation procedure, we finally prove a conditional minimality property for the candidate solutions in the general case (including the case where \(\phi \) is crystalline).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ambrosio, L.: Some fine properties of sets of finite perimeter in Ahlfors regular metric measure spaces. Adv. Math. 159(1), 51–67 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ardentov, A.A., Le Donne, E., Sachkov, Y.L.: Sub-Finsler geodesics on the Cartan group. Regul. Chaotic Dyn. 24(1), 36–60 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aubin, J.-P., and Frankowska, H.: Set-valued analysis. Modern Birkhäuser Classics. Birkhäuser Boston, Inc., Boston (2009). Reprint of the 1990 edition

  4. Balogh, Z.M.: Size of characteristic sets and functions with prescribed gradient. J. Reine Angew. Math. 564, 63–83 (2003)

    MathSciNet  MATH  Google Scholar 

  5. Barilari, D., Boscain, U., Le Donne, E., Sigalotti, M.: Sub-Finsler structures from the time-optimal control viewpoint for some nilpotent distributions. J. Dyn. Control Syst. 23(3), 547–575 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Berestovskiĭ, V.N.: Geodesics of nonholonomic left-invariant inner metrics on the Heisenberg group and isoperimetrics of the Minkowski plane. Sibirsk. Mat. Zh. 35(1), 3-11 i (1994)

    MathSciNet  Google Scholar 

  7. Capogna, L., Danielli, D., Garofalo, N.: The geometric Sobolev embedding for vector fields and the isoperimetric inequality. Commun. Anal. Geom. 2(2), 203–215 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cheng, J.-H., Hwang, J.-F., Malchiodi, A., Yang, P.: Minimal surfaces in pseudohermitian geometry. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 4(1), 129–177 (2005)

    MathSciNet  MATH  Google Scholar 

  9. Dayawansa, W.P., Martin, C.F.: A converse Lyapunov theorem for a class of dynamical systems which undergo switching. IEEE Trans. Autom. Control 44(4), 751–760 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Figalli, A., Maggi, F., Pratelli, A.: A mass transportation approach to quantitative isoperimetric inequalities. Invent. Math. 182(1), 167–211 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fonseca, I.: The Wulff theorem revisited. Proc. R. Soc. Lond. Ser. A 432(1884), 125–145 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fonseca, I., Müller, S.: A uniqueness proof for the Wulff theorem. Proc. R. Soc. Edinb. Sect. A 119(1–2), 125–136 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  13. Franceschi, V., Leonardi, G.P., Monti, R.: Quantitative isoperimetric inequalities in \(\mathbb{H} ^n\). Calc. Var. Partial Differ. Equ. 54(3), 3229–3239 (2015)

    Article  MATH  Google Scholar 

  14. Franceschi, V., Montefalcone, F., Monti, R.: CMC spheres in the Heisenberg group. Anal. Geom. Metr. Spaces 7(1), 109–129 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  15. Franceschi, V., Monti, R.: Isoperimetric problem in \(H\)-type groups and Grushin spaces. Rev. Mat. Iberoam. 32(4), 1227–1258 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Franchi, B., Serapioni, R., Serra Cassano, F.: Meyers–Serrin type theorems and relaxation of variational integrals depending on vector fields. Houston J. Math. 22(4), 859–890 (1996)

    MathSciNet  MATH  Google Scholar 

  17. Garofalo, N., Nhieu, D.-M.: Isoperimetric and Sobolev inequalities for Carnot–Carathéodory spaces and the existence of minimal surfaces. Commun. Pure Appl. Math. 49(10), 1081–1144 (1996)

    Article  MATH  Google Scholar 

  18. Leonardi, G.P., Rigot, S.: Isoperimetric sets on Carnot groups. Houston J. Math. 29(3), 609–637 (2003)

    MathSciNet  MATH  Google Scholar 

  19. Lokutsievskiĭ, L.V.: Convex trigonometry with applications to sub-Finsler geometry. Mat. Sb. 210(8), 120–148 (2019)

    MathSciNet  Google Scholar 

  20. Mason, P., Boscain, U., Chitour, Y.: Common polynomial Lyapunov functions for linear switched systems. SIAM J. Control Optim. 45(1), 226–245 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Monti, R.: Heisenberg isoperimetric problem. The axial case. Adv. Calc. Var. 1(1), 93–121 (2008)

    MathSciNet  MATH  Google Scholar 

  22. Monti, R., Rickly, M.: Convex isoperimetric sets in the Heisenberg group. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 8(2), 391–415 (2009)

    MathSciNet  MATH  Google Scholar 

  23. Pansu, P.: Une inégalité isopérimétrique sur le groupe de Heisenberg. C. R. Acad. Sci. Paris Sér. I Math. 295(2), 127–130 (1982)

    MathSciNet  MATH  Google Scholar 

  24. Pozuelo, J., Ritoré, M.: Pansu–Wulff shapes in \(\mathbb{H}^1\). Adv. Calc. Var. (2021). https://doi.org/10.1515/acv-2020-0093

  25. Ritoré, M.: A proof by calibration of an isoperimetric inequality in the Heisenberg group \({\mathbb{H} }^n\). Calc. Var. Partial Differ. Equ. 44(1–2), 47–60 (2012)

    Article  MATH  Google Scholar 

  26. Ritoré, M., Rosales, C.: Area-stationary surfaces in the Heisenberg group \(\mathbb{H} ^1\). Adv. Math. 219(2), 633–671 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Rockafellar, R.T.: Convex analysis. Princeton Landmarks in Mathematics. Princeton University Press, Princeton (1997). Reprint of the 1970 original, Princeton Paperbacks

  28. Sachkov, Y.L.: Periodic controls in step 2 strictly convex sub-Finsler problems. Regul. Chaotic Dyn. 25(1), 33–39 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  29. Sánchez, A.P.: A Theory of Sub-Finsler Surface Area in the Heisenberg Group. PhD thesis, Tufts University (2017)

  30. Schneider, R.: Convex bodies: the Brunn–Minkowski theory. In: Encyclopedia of Mathematics and Its Applications, vol. 44. Cambridge University Press, Cambridge (1993)

  31. Wulff, G.: Zur Frage der Geschwindigkeit des Wachsthums und der Auflösung der Krystallflächen. Z. Kristallogr. 34, 449–530 (1901)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank M. Ritoré and C. Rosales for pointing out a gap in a preliminary version of the paper. The first and third authors acknowledge the support of ANR-15-CE40-0018 project SRGI - Sub-Riemannian Geometry and Interactions. The first author acknowledges the support received from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 794592, of the INdAM–GNAMPA project Problemi isoperimetrici con anisotropie, and of a public grant of the French National Research Agency (ANR) as part of the Investissement d’avenir program, through the iCODE project funded by the IDEX Paris-Saclay, ANR-11-IDEX-0003-02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentina Franceschi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Franceschi, V., Monti, R., Righini, A. et al. The Isoperimetric Problem for Regular and Crystalline Norms in \({\mathbb {H}}^1\). J Geom Anal 33, 8 (2023). https://doi.org/10.1007/s12220-022-01045-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-022-01045-4

Keywords

Mathematics Subject Classification

Navigation